Kraft lignin fractionation by organic solvents: Correlation between molar mass and higher heating value.

Bioresour Technol

Science and Technology Center for Sustainability - CCTS, Federal University of São Carlos, Rodovia João Leme dos Santos, Km 110 -Sorocaba, SP, Brazil. Electronic address:

Published: October 2020

The new concept of integrated biorefineries has significantly changed pulp and paper industries. Lignin, which until then was only burned to generate energy, is now an important raw material for new products production. Kraft lignin (KL) fractions obtained by sequential fractionation with five organic solvents. This sequence allows to extract fractions from lower molar mass to higher molar one, resulting in more homogeneous samples. Lignin's fractions were characterized by FTIR, GPC, TGA and Higher Heating Value (HHV). HHV for KL was 24966, the lowest being 17,891 (F5) and the highest being 27051 J/g (F1), inversely proportional to the molar masses of fractions. This is a very important result indicating that the lower HHV fractions can be used for certain applications, such as antioxidants, additives, polymers, among others, adding value to kraft lignin. Fractions with higher HHV could be used for energy generation in the cellulose paper industry.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2020.123757DOI Listing

Publication Analysis

Top Keywords

kraft lignin
12
fractionation organic
8
organic solvents
8
molar mass
8
mass higher
8
higher heating
8
lignin fractions
8
fractions
6
lignin fractionation
4
solvents correlation
4

Similar Publications

Transparent cellulose-lignin films containing Fe with high UV absorption for thermal management.

Int J Biol Macromol

January 2025

Research Division for Sustainable Papermaking & Advanced Materials, Key Laboratory of Biobased Materials Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, China. Electronic address:

In this paper, cellulose-lignin films containing Fe were prepared by the codissolution-precipitation method, and the films have high transparency as well as high UV absorption. In this process, kraft lignin chelates with Fe and then bonds with cellulose through hydrogen bonding, evenly distributing within the film. The morphological results showed that the kraft lignin chelated with Fe bound tightly linked to cellulose within the Fe@cellulose-lignin composite films.

View Article and Find Full Text PDF

Chemical Modification of Softwood Kraft Lignin with Succinic Acid.

ACS Omega

December 2024

Programa de Engenharia de Processos Químicos e Bioquímicos, Escola de Química, Centro de Tecnologia, Universidade Federal Do Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Bloco E, Ilha do Fundão, Rio de Janeiro 21941-909, Brasil.

This work explored the chemical modification of lignin with succinic acid for the first time. Temperature is crucial for the process, reducing reaction time and increasing conversion. In particular, at 160 °C for five h with 0.

View Article and Find Full Text PDF

Dataset of some added-lignin thermoformed pulps.

Data Brief

December 2024

RISE PFI AS, Høgskoleringen 6B, 7491 Trondheim, Norway.

This data article summarizes the material properties of some added-lignin thermoformed pulps (ALTPs). This type of molded pulp is particularly suited for replacing plastics in environments, where moisture is encountered, as the lignin reduces the transport and adsorption of water. The dataset was measured on wet formed substrates with either softwood chemi-thermomechanical pulp (CTMP) or northern bleached softwood Kraft pulp (NBSK).

View Article and Find Full Text PDF

The development of eco-friendly wood adhesives have gained more interest among adhesives industries due to the concerns about using carcinogenic formaldehyde and petroleum-based phenol in commercially available adhesives. Therefore, many studies have been done by using lignin to partially replace phenol and completely substitute formaldehyde with non-toxic glyoxal in a wood adhesive formulation. This study focused on using different percentages of lignin substitution (10 %, 30 % and 50 wt%) of alkaline and organosolv coconut husk lignin into soda lignin-phenol-glyoxal (SLPG), Kraft lignin-phenol-glyoxal (KLPG) and organosolv lignin-phenol-glyoxal (OLPG) adhesives.

View Article and Find Full Text PDF

Kraft lignin biobleaching by a dye-decolorizing peroxidase from the Antarctic Pseudomonas sp. AU10 strain.

Braz J Microbiol

December 2024

Sección Bioquímica, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay.

Pseudomonas sp. AU10 is an Antarctic psychrotolerant bacterium that produces a dye-decolorizing peroxidase (DyP-AU10). The recombinant enzyme (rDyP-AU10) is a heme-peroxidase that decolors dyes and modifies kraft lignin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!