Accelerating high-resolution NMR of half-integer quadrupolar nuclei in solids: SPAM-MQMAS and SPAM-STMAS.

Solid State Nucl Magn Reson

Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unit of Catalysis and Chemistry of Solids, F-59000, Lille, France; Bruker Biospin, 34 rue de l'industrie, F-67166, Wissembourg, France; RIKEN RSC NMR Science and Development Division, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama-shi, Kanagawa, 230-0045, Japan. Electronic address:

Published: August 2020

In solid-state NMR, multiple-quantum MAS (MQMAS) and satellite-transition MAS (STMAS) experiments are well-established techniques to obtain high-resolution spectra of half-integer quadrupolar nuclei. In 2004 and 2005, a soft-pulse-added-mixing (SPAM) concept was introduced by Gan and Amoureux to enhance the S/N ratio of MQMAS and STMAS experiments. Despite their robustness and simplicity, SPAM approaches have not yet been widely applied. Here, we further exploit SPAM concepts for sensitivity enhancement upon acquisition of two-dimensional MQMAS and STMAS spectra and also establish a general procedure upon implementation of SPAM-MQMAS and SPAM-STMAS NMR. Its effectiveness and ease in experimental setup are demonstrated using simulations and experiments performed on I ​= ​3/2 (Na, Rb), 5/2 (Al, Rb) and 9/2 (Nb) nuclei with a variety of quadrupolar coupling constants (C). Compared to the conventional z-filter methods, sensitivity enhancements in between 2 and 4 are achievable with SPAM. We recommend to use SPAM with a ratio of 4:1 for the number of echoes and antiechoes to safely maximize the sensitivity and resolution simultaneously. In addition, a comparison of the experimental approaches is made in the context of SPAM-MQMAS and SPAM-STMAS NMR with respect to repetition delay and spinning frequency, aiming to discuss the precautions upon making a judicious choice of high-resolution NMR methods of half-integer quadrupolar nuclei.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ssnmr.2020.101668DOI Listing

Publication Analysis

Top Keywords

half-integer quadrupolar
12
quadrupolar nuclei
12
spam-mqmas spam-stmas
12
high-resolution nmr
8
stmas experiments
8
mqmas stmas
8
spam-stmas nmr
8
nmr
5
spam
5
accelerating high-resolution
4

Similar Publications

We report a new NMR method for treating two-site chemical exchange involving half-integer quadrupolar nuclei in a solution. The new method was experimentally verified with extensive Na ( = 3/2), K ( = 3/2), and Rb ( = 3/2) NMR results from alkali metal ions (Na, K, and Rb) in a solution over a wide range of molecular tumbling conditions. In the fast-motion limit, all allowed single-quantum NMR transitions for a particular quadrupolar nucleus are degenerate giving rise to one Lorentzian signal.

View Article and Find Full Text PDF

Highly efficient heteronuclear polarization transfer using dipolar-echo edited R-symmetry sequences in solid-state NMR.

Chem Sci

December 2024

State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Zhongshan Road 457 Dalian 116023 China

In solid-state NMR, dipolar-based heteronuclear polarization transfer has been extensively used for sensitivity enhancement and multidimensional correlations, but its efficiency often suffers from undesired spin interactions and hardware limitations. Herein, we propose a novel dipolar-echo edited R-symmetry (DEER) sequence, which is further incorporated into the INEPT-type scheme, dubbed DEER-INEPT, for achieving highly efficient heteronuclear polarization transfer. Numerical simulations and NMR experiments demonstrate that DEER-INEPT offers significantly improved robustness, enabling efficient polarization transfer under a wide range of MAS conditions, from slow to ultrafast rates, outperforming existing methods.

View Article and Find Full Text PDF

A simplified theoretical description of multiple-quantum excitation and mixing for nuclear magnetic resonance of half-integer quadrupolar nuclei is presented. The approach recasts the multiple-quantum nutation behavior in terms of reduced excitation and mixing curves through a scaling of the first-order offset frequency by the quadrupolar coupling constant. The two-dimensional correlation of the static first-order anisotropic line shape to the second-order anisotropic magic-angle-spinning (MAS) line shape is utilized to transform the three-dimensional integral over the three Euler angles into a single integral over the dimensionless first-order offset parameter.

View Article and Find Full Text PDF

High isotropic resolution is essential for the structural elucidation of samples with multiple sites. In this study, utilizing the benefits of TRAPDOR-based heteronuclear multiple quantum coherence (T-HMQC) and a pair of one rotor period long cosine amplitude modulated low-power (cos-lp) pulse-based symmetric-split-t multiple-quantum magic angle spinning (MQMAS) methods, we have developed a proton-detected 2D Cl/H T-HMQC-MQMAS pulse sequence under fast MAS (70 kHz) to achieve high-resolution in the indirect dimension of the spin-3/2 (Cl) nuclei connected via protons. As T-HMQC polarizes not only single-quantum central transition (SQ) but also triple-quantum (TQ) coherences, the proposed 2D pulse sequence is implemented via selection of two coherence pathways (SQ→TQ →SQ and TQ → SQ→TQ) resulting in the Cl isotropic dimension and is superior to the existing double-quantum satellite-transition (DQ) T-HMQC in terms of resolution.

View Article and Find Full Text PDF

Advanced solid-state NMR spectroscopy and its applications in zeolite chemistry.

Prog Nucl Magn Reson Spectrosc

November 2023

National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China. Electronic address:

Solid-state NMR spectroscopy (ssNMR) can provide details about the structure, host-guest/guest-guest interactions and dynamic behavior of materials at atomic length scales. A crucial use of ssNMR is for the characterization of zeolite catalysts that are extensively employed in industrial catalytic processes. This review aims to spotlight the recent advancements in ssNMR spectroscopy and its application to zeolite chemistry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!