Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Food packaging is one of the main contributors to the high rates of environmental contamination; therefore, interest has emerged on the use of biopolymers as alternative materials to replace conventional food packaging. Chia seed (Salvia hispanica) is recognized by having a high content of a polysaccharide called mucilage. The aim of this study was to evaluate the feasibility using of chia seed mucilage (CSM) and a polyol mixture containing glycerol and sorbitol for the development of films. CSM films with higher sorbitol content showed superior tensile strength (3.23 N/mm) and lower water vapor permeability (1.3*10 g/m*s*Pa), but had poor flexibility compared to other treatments. Conversely, high glycerol content showed high elongation at break (67.55%) and solubility (22.75%), but poor water vapor permeability and tensile strength. Film formulations were optimized implementing a factorial design according to response surface methodology. Raman spectra analysis showed shifts from 854 to 872 cm and 1061 to 1076 cm, β (CCO) modes, indicating an increase in hydrogen bonding, responsible for the high tensile strength and decreased water vapor permeability observed in this study. The optimum conditions of polyol concentration were 1.3 g of glycerol and 2.0 g of sorbitol per g of CSM. Based on these results, chia seed mucilage can successfully be used to develop biofilms with potential to be used in drug delivery and edible food coating applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2020.07.023 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!