Reduced glucose uptake usually occurs in type 2 diabetes due to down-regulation of brain glucose transporters. The potential of kolaviron, a biflavonoid from Garcinia kola to stimulate glucose uptake and suppress glucose-induced oxidative toxicity were investigated in rat brain. Its molecular interactions with the target proteins were investigated in silico. Kolaviron was incubated with excised rat brain in the presence of glucose for 2 h, with metformin serving as a positive control. Kolaviron caused a significant (p < 0.05) increase in glucose uptake, glutathione level, superoxide dismutase, catalase, ATPase, ENTPDase and 5'-nucleotidase activities, while concomitantly depleting malondialdehyde level, acetylcholinesterase and butyrylcholinesterase activities compared to brains incubated with glucose only. Electron microscopy (SEM and TEM) analysis revealed kolaviron had little or no effect on the ultrastructural morphology of brain tissues as evidenced by the intact dendritic and neuronal network, blood vessels, mitochondria, synaptic vesicles, and pre-synaptic membrane. SEM-EDX analysis revealed a restorative effect of glucose-induced alteration in brain elemental concentrations, with total depletion of aluminum and zinc. MTT analysis revealed kolaviron had no cytotoxic effect on HT-22 cells. Molecular docking revealed a potent interaction between kolaviron and catalase at the SER114 and MET350 residues, with a binding energy of 12 kcal/mol. Taken together, these results portray the potential of kolaviron to stimulate glucose uptake while concomitantly coffering a neuroprotective effect.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neures.2020.06.008 | DOI Listing |
Mol Med
December 2024
Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin er Road, Shanghai, 200025, China.
Background: Glaucoma is a group of heterogeneous neurodegenerative diseases with abnormal energy metabolism and imbalanced neuroinflammation in the retina. Thioredoxin-interacting protein (TXNIP) is involved in glucose and lipid metabolism, and associated with oxidative stress and inflammation, however, not known whether to be involved in glaucoma neuropathy and its underlying mechanisms.
Methods: To establish the chronic ocular hypertension (COH) mice model.
Biochimie
December 2024
Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway.
Skeletal muscle has an important role in whole body energy metabolism and various proteases are involved in skeletal muscle functions. We have previously identified the cysteine protease legumain in cultured human skeletal muscle cells. However, the potential role of legumain in regulation of energy metabolism remains unexplored.
View Article and Find Full Text PDFComput Biol Med
December 2024
Biomedical Engineering Institute, Chiang Mai University, Chiang Mai, 50200, Thailand; Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand. Electronic address:
Jiaogulan (Gynostemma pentaphyllum) is a traditional herb with potential antidiabetic properties. This study investigated the underlying mechanisms of these properties by analysing plasma protein profiles in type 2 diabetes patients. A total of 42 participants were divided into three groups, each comprising 14 individuals: healthy controls (N), untreated type 2 diabetes patients (DM), and Jiaogulan-treated type 2 diabetes patients (DMJ).
View Article and Find Full Text PDFAACE Clin Case Rep
September 2024
Department of Medicine, Suburban Hospital, Johns Hopkins Medicine, Bethesda, Maryland.
Background/objective: Calcium channel blockers, when taken in overdose quantities, can cause hyperglycemia requiring so-called hyperinsulinemic-euglycemic therapy. The objective of this report was to describe a patient with calcium channel blocker toxicity resulting from overdose of amlodipine.
Case Report: A 74-year-old man presented with a fall and loss of consciousness.
Sci Rep
December 2024
Department of Urology, Urological Science Institute, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-gu, Seoul, 03722, South Korea.
Carbon dots (CDs) are versatile nanomaterials that are considered ideal for application in bioimaging, drug delivery, sensing, and optoelectronics owing to their excellent photoluminescence, biocompatibility, and chemical stability features. Nitrogen doping enhances the fluorescence of CDs, alters their electronic properties, and improves their functional versatility. N-doped CDs can be synthesized via solvothermal treatment of carbon sources with nitrogen-rich precursors; however, systematic investigations of their synthesis mechanisms have been rarely reported.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!