Cell-type-specific differences in KDEL receptor clustering in mammalian cells.

PLoS One

Molecular and Cell Biology, Department of Biosciences and Center of Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany.

Published: September 2020

In eukaryotic cells, KDEL receptors (KDELRs) facilitate the retrieval of endoplasmic reticulum (ER) luminal proteins from the Golgi compartment back to the ER. Apart from the well-documented retention function, recent findings reveal that the cellular KDELRs have more complex roles, e.g. in cell signalling, protein secretion, cell adhesion and tumorigenesis. Furthermore, several studies suggest that a sub-population of KDELRs is located at the cell surface, where they could form and internalize KDELR/cargo clusters after K/HDEL-ligand binding. However, so far it has been unclear whether there are species- or cell-type-specific differences in KDELR clustering. By comparing ligand-induced KDELR clustering in different mouse and human cell lines via live cell imaging, we show that macrophage cell lines from both species do not develop any clusters. Using RT-qPCR experiments and numerical analysis, we address the role of KDELR expression as well as endocytosis and exocytosis rates on the receptor clustering at the plasma membrane and discuss how the efficiency of directed transport to preferred docking sites on the membrane influences the exponent of the power-law distribution of the cluster size.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7347126PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0235864PLOS

Publication Analysis

Top Keywords

cell-type-specific differences
8
receptor clustering
8
kdelr clustering
8
cell lines
8
cell
6
differences kdel
4
kdel receptor
4
clustering
4
clustering mammalian
4
mammalian cells
4

Similar Publications

Corticospinal motor neurons (CSMN), located in the motor cortex of the brain, are one of the key components of the motor neuron circuitry. They are in part responsible for the initiation and modulation of voluntary movement, and their degeneration is the hallmark for numerous diseases, such as amyotrophic lateral sclerosis (ALS), hereditary spastic paraplegia, and primary lateral sclerosis. Cortical hyperexcitation followed by in-excitability suggests the early involvement of cortical dysfunction in ALS pathology.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.

Background: Progressive supranuclear palsy (PSP) is a neurodegenerative disorder involving pathological deposition of tau that includes glial inclusions and specific regional vulnerability patterns. Therapeutic developments are hampered by incomplete understanding of disease mechanisms. Few studies have examined its cell type-specific effects.

View Article and Find Full Text PDF

Background: Patients with Alzheimer's Disease (AD) frequently manifest comorbid neuropsychiatric symptoms (NPS) with depression and anxiety being most prevalent. Previously we identified shared genetic risk loci between AD and major depressive disorder (MDD). In another study, we constructed a polygenic risk score (PRS) based on MDD-GWAS data and demonstrated its performance in predicting depression onset in LOAD patients.

View Article and Find Full Text PDF

Background: Clinicopathological studies of Alzheimer's disease (AD) have demonstrated that synaptic or neuronal loss and clinical cognitive decline do not reliably correlate with fibrillar amyloid burden. We created a transgenic mouse model overexpressing Dutch (E693Q) mutant human amyloid precursor protein (APP) driven by the pan-neuronal Thy1 promoter. Accumulation of APP carboxyl-terminal fragments was observed in the brains of these mice, which develop an impaired learning phenotype directly proportional to brain oAβ levels.

View Article and Find Full Text PDF

Background: Two-thirds of Alzheimer's Disease (AD) cases are women, and our team has identified molecular factors that relate to disease in a sex-specific manner. Here, we leverage single-cell transcriptomics from dorsolateral prefrontal cortex (N = 424) from the Religious Orders Study and Memory and Aging Project (ROS/MAP; AD Knowledge Portal syn2580853) to characterize sex-specific contributors at cellular resolution.

Method: Single-nucleic RNAseq data was generated and processed as previously described.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!