Limited information is available that seed biopriming with plant growth-promoting Enterobacter spp. play a prominent role to enhance vegetative growth of plants. Contrary to Enterobacter cloacae, Enterobacter hormaechei is a less-studied counterpart despite its vast potential in plant growth-promotion mainly through the inorganic phosphorus (P) and potassium (K) solubilization abilities. To this end, 18 locally isolated bacterial pure cultures were screened and three strains showed high P- and K-solubilizing capabilities. Light microscopy, biochemical tests and 16S rRNA gene sequencing revealed that strains 15a1 and 40a were closely related to Enterobacter hormaechei while strain 38 was closely related to Enterobacter cloacae (Accession number: MN294583; MN294585; MN294584). All Enterobacter spp. shared common plant growth-promoting traits, namely nitrogen (N2) fixation, indole-3-acetic acid production and siderophore production. The strains 38 and 40a were able to produce gibberellic acid, while only strain 38 was able to secrete exopolysaccharide on agar. Under in vitro germination assay of okra (Abelmoschus esculentus) seeds, Enterobacter spp. significantly improved overall germination parameters and vigor index (19.6%) of seedlings. The efficacy of root colonization of Enterobacter spp. on the pre-treated seedling root tips was confirmed using Scanning Electron Microscopy (SEM). The pot experiment of bioprimed seeds of okra seedling showed significant improvement of the plant growth (> 28%) which corresponded to the increase of P and K uptakes (> 89%) as compared to the uninoculated control plants. The leaf surface area and the SPAD chlorophyll index of bioprimed plants were increased by up to 29% and 9% respectively. This report revealed that the under-explored species of P- and K-solubilizing Enterobacter hormaechei sp. with multiple plant beneficial traits presents a great potential sustainable approach for enhancement of soil fertility and P and K uptakes of plants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7347142 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0232860 | PLOS |
Microbiol Spectr
December 2024
Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
Carbapenem-resistant complex (CR-ECC), which is rapidly increasing as the cause of nosocomial infections, has limited treatment options. The aim of this study is to investigate the microbiological and clinical traits and molecular epidemiology of isolates of CR-ECC and provide guidance for antibiotic selection in clinical practice. Clinical CR-ECC isolates (ertapenem MIC ≥ 2 mg/L) were collected from 2021 to 2022.
View Article and Find Full Text PDFNew Microbes New Infect
December 2024
Center for Food Safety, Department of Food Science and Technology, University of Georgia, 1109 Experiment Street, Griffin, GA, 30223-1797, USA.
Gut Microbes
December 2024
Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria.
Severe brain damage is common among premature infants, and the gut microbiota has been implicated in its pathology. Although the order of colonizing bacteria is well described, the mechanisms underlying aberrant assembly of the gut microbiota remain elusive. Here, we employed long-read nanopore sequencing to assess abundances of microbial species and their functional genomic potential in stool samples from a cohort of 30 extremely premature infants.
View Article and Find Full Text PDFJ Antimicrob Chemother
December 2024
ANSES-Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France.
Background: Enterobacter hormaechei is an important pathogen in humans and animals, which, in addition to its intrinsic AmpC, can acquire a wide variety of genes conferring resistances to extended-spectrum cephalosporins (ESCs) and carbapenems (CPs). In France, human clinical outbreaks of E. hormaechei resistant to ESC or carbapenem were reported.
View Article and Find Full Text PDFJ Glob Antimicrob Resist
December 2024
Department of Clinical Laboratory Medicine, Taizhou Municipal Hospital, Taizhou, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!