AI Article Synopsis

  • The cancer research community is advancing in understanding tumor biology, but struggles with integrating diverse genomic data into clinical care due to the lack of governance and quality control in data resources.
  • Molecular tumor boards (MTBs) are key collaborative platforms that enhance the interpretation of complex genomic data through multidisciplinary expert involvement, and virtual MTB setups enable broader collaboration and data sharing.
  • Improved genomic interpretation techniques are leading to better classification of patients and diseases, ultimately aiming for more tailored treatment strategies.

Article Abstract

Purpose: The cancer research community is constantly evolving to better understand tumor biology, disease etiology, risk stratification, and pathways to novel treatments. Yet the clinical cancer genomics field has been hindered by redundant efforts to meaningfully collect and interpret disparate data types from multiple high-throughput modalities and integrate into clinical care processes. Bespoke data models, knowledgebases, and one-off customized resources for data analysis often lack adequate governance and quality control needed for these resources to be clinical grade. Many informatics efforts focused on genomic interpretation resources for neoplasms are underway to support data collection, deposition, curation, harmonization, integration, and analytics to support case review and treatment planning.

Methods: In this review, we evaluate and summarize the landscape of available tools, resources, and evidence used in the evaluation of somatic and germline tumor variants within the context of molecular tumor boards.

Results: Molecular tumor boards (MTBs) are collaborative efforts of multidisciplinary cancer experts equipped with genomic interpretation resources to aid in the delivery of accurate and timely clinical interpretations of complex genomic results for each patient, within an institution or hospital network. Virtual MTBs (VMTBs) provide an online forum for collaborative governance, provenance, and information sharing between experts outside a given hospital network with the potential to enhance MTB discussions. Knowledge sharing in VMTBs and communication with guideline-developing organizations can lead to progress evidenced by data harmonization across resources, crowd-sourced and expert-curated genomic assertions, and a more informed and explainable usage of artificial intelligence.

Conclusion: Advances in cancer genomics interpretation aid in better patient and disease classification, more streamlined identification of relevant literature, and a more thorough review of available treatments and predicted patient outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7397775PMC
http://dx.doi.org/10.1200/CCI.19.00169DOI Listing

Publication Analysis

Top Keywords

molecular tumor
12
tumor boards
8
cancer genomics
8
genomic interpretation
8
interpretation resources
8
hospital network
8
resources
6
cancer
5
tumor
5
clinical
5

Similar Publications

The growing sophistication of tumor molecular profiling has helped to slowly transition oncologic care toward a more personalized approach in different tumor types, including in bladder cancer. The National Comprehensive Cancer Network recommends that all patients with stage IVA and stage IVB urothelial carcinoma have molecular analysis that integrates at least testing to help facilitate the selection of future therapeutic options. Sequencing of tumor-derived tissue is the mainstay to obtain this genomic testing, but as in other cancers, there has been extensive research into the integration of liquid biopsies in longitudinal management.

View Article and Find Full Text PDF

Purpose: We designed a CD19-targeted chimeric antigen receptor (CAR) comprising a calibrated signaling module, termed 1XX, that differs from that of conventional CD28/CD3ζ and 4-1BB/CD3ζ CARs. Preclinical data demonstrated that 1XX CARs generated potent effector function without undermining T-cell persistence. We hypothesized that 1XX CAR T cells may be effective at low doses and elicit minimal toxicities.

View Article and Find Full Text PDF

Sonodynamic therapy, a treatment modality recently widely used, is capable of disrupting the tumor microenvironment by inducing immunogenic cell death (ICD) and enhancing antitumor immunity during immunotherapy. Erdafitinib, an inhibitor of the fibroblast growth factor receptor, has demonstrated potential benefits for treating bladder cancer. However, Erdafitinib shows effectiveness in only a small number of patients, and the majority of patients responding positively to the medication have "immune-cold" tumors.

View Article and Find Full Text PDF

The mammalian Hippo kinases, MST1 and MST2, regulate organ development and suppress tumor formation by balancing cell proliferation and death. In macrophages, inflammasomes detect molecular patterns from invading pathogens or damaged host cells and trigger programmed cell death. In addition to lytic pyroptosis, the signatures associated with apoptosis are induced by inflammasome activation, but how the inflammasomes coordinate different cell death processes remains unclear.

View Article and Find Full Text PDF

Objectives: The aim of this study was to develop and validate a nomogram model that predicts the risk of bone metastasis (BM) in a prostate cancer (PCa) population.

Methods: We retrospectively collected and analyzed the clinical data of patients with pathologic diagnosis of PCa from January 1, 2013 to December 31, 2022 in two hospitals in Yangzhou, China. Patients from the Affiliated Hospital of Yangzhou University were divided into a training set and patients from the Affiliated Clinical College of Traditional Chinese Medicine of Yangzhou University were divided into a validation set.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!