Separation and Tracing of Anthropogenic Magnetite Nanoparticles in the Urban Atmosphere.

Environ Sci Technol

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

Published: August 2020

Nanosized magnetite is a highly toxic material due to its strong ability to generate reactive oxygen species in vivo, and the presence of magnetite NPs in the brain has been linked with aging and neurodegenerative diseases such as Alzheimer's disease. Recently, magnetite pollution nanoparticles (NPs) were found to be present in the human brain, heart, and blood, which raises great concerns about the health risks of airborne magnetite NPs. Here, we report the abundant presence and chemical multifingerprints (including high-resolution structural and elemental fingerprints) of magnetite NPs in the urban atmosphere. We establish a methodology for high-efficiency retrieving and accurate quantification of airborne magnetite NPs. We report the occurrence levels (annual mean concentration 75.5 ± 33.2 ng m in Beijing with clear season variations) and the pollution characteristics of airborne magnetite NPs. Based on the chemical multifingerprints of the NPs, we identify and estimate the contributions of the major emission sources for airborne magnetite NPs. We also give an assessment of human exposure risks of airborne magnetite NPs. Our findings support the identification of airborne magnetite NPs as a threat to human health.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.0c01841DOI Listing

Publication Analysis

Top Keywords

magnetite nps
32
airborne magnetite
24
magnetite
11
nps
10
urban atmosphere
8
risks airborne
8
nps report
8
chemical multifingerprints
8
airborne
6
separation tracing
4

Similar Publications

Impact of climate change that stems from gaseous emissions require sustainable materials to eliminate sulfur.  This study involves the modification of humic acid with magnetite nanoparticles (Fe₃O₄ NPs) by a microwave-assisted synthesis of an absorbent with reasonable pore volume and diameter for elimination of thiophenic compounds from fuel. The magnetic nano adsorbent designated Fe3O4@HA was characterized using advanced spectroscopic techniques, while their structure and morphology were analyzed through DLS, XPS, XRD, FT-IR, TGA, FESEM-EDX, VSM, and BET-N2 techniques.

View Article and Find Full Text PDF

A holistic approach for the evaluation of iron nanoparticles on maize plants and earthworms in natural soil.

Chemosphere

January 2025

Sustainability of Natural Resources and Energy Program, Cinvestav-Saltillo, Coahuila, C.P. 25900, Mexico.

There is a debate about the implications of the effect of nanoparticles or nanomaterials on edible plants and soil organisms. Earthworms have been used to evaluate soil quality, reproduction, survival, and other biochemical parameters when organisms are exposed to nanomaterials. Most studies have been performed in laboratory settings, and little has been studied under realistic conditions, especially when earthworms and corn plants share the same natural soil and organic matter space.

View Article and Find Full Text PDF

In this study, we report the synthesis of iron oxide nanoparticles (FeONPs) using micro-emulsion-hydrothermal method. By adjusting the synthesis temperature, we successfully produced FeO nanorods and nanospheres. In addition, the 2-octanol, and the surfactant cetyltrimethylammonium bromide served as a solvent in the synthesis process.

View Article and Find Full Text PDF

In this paper, we present a facile yet effective method for the fabrication of core-shell nanoparticles (NPs) of magnetite (FeO) and polydopamine (FeO@PDA) and their decoration with a tunable amount of gold NPs (AuNPs). For this, FeO NPs were fabricated through the polyol method and AuNPs were deposited onto FeO@PDA via anchoring of as-prepared citrate-stabilized AuNPs or reduction of Au ions. PDA with its numerous catechol groups enabled the decoration of AuNPs in a well-controlled manner.

View Article and Find Full Text PDF

This study aims to use superparamagnetic iron oxide nanoparticles (SPIONs), specifically magnetite (FeO), to deliver deflazacort (DFZ) and ibuprofen (IBU) to Duchenne muscular dystrophy-affected (DMD) mouse muscles using an external magnetic field. The SPIONs are synthesized by the co-precipitation method, and their surfaces are functionalized with L-cysteine to anchor the drugs, considering that the cysteine on the surface of the SPIONs in the solid state dimerizes to form the cystine molecule, creating the FeO-(Cys)-DFZ and FeO-(Cys)-IBU systems for tests. The FeO nanoparticles (NPs) were characterized by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), dynamic light scattering (DLS), and magnetic measurements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!