MXenes, a large family of two-dimensional materials that are intensely investigated for a broad range of applications, are unstable in water, spontaneously forming TiO. Several hypotheses have been proposed recently to explain the transformations of MXenes in aqueous environments based on characterization of solid products and measurements of solution pH. However, no studies of the gaseous products of these reactions have been reported. In this work, we demonstrate the use of Raman spectroscopy and gas chromatography techniques to study the gaseous reaction products of TiC, TiC, TiCN, and NbC MXenes in aqueous environments. Based on the analysis of gases, the reactivities of MXenes with different monolayer thickness and chemical composition have been analyzed. We demonstrate the analysis of gases produced during MXene transformations as a powerful technique that can be used for better understanding of their nontrivial chemistry.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.0c03602DOI Listing

Publication Analysis

Top Keywords

mxenes aqueous
8
aqueous environments
8
environments based
8
analysis gases
8
mxenes
5
understanding chemistry
4
chemistry two-dimensional
4
two-dimensional transition
4
transition metal
4
metal carbides
4

Similar Publications

In this research, the degradation of Congo red (CR) dye, as an organic pollutant in water, was investigated using microwave-induced reaction technology. This technology requires a microwave-absorbing catalyst and the 2D TiCT MXene was synthesized for that purpose. The synthesized catalyst was characterized using XRD, SEM, TEM, EDX, BET, and XPS techniques.

View Article and Find Full Text PDF

Thermoelectric Modulation of Neat TiCT MXenes by Finely Regulating the Stacking of Nanosheets.

Nanomicro Lett

December 2024

Department of Materials Science, Fudan University, Shanghai, 200433, People's Republic of China.

Emerging two-dimensional MXenes have been extensively studied in a wide range of fields thanks to their superior electrical and hydrophilic attributes as well as excellent chemical stability and mechanical flexibility. Among them, the ultrahigh electrical conductivity (σ) and tunable band structures of benchmark TiCT MXene demonstrate its good potential as thermoelectric (TE) materials. However, both the large variation of σ reported in the literature and the intrinsically low Seebeck coefficient (S) hinder the practical applications.

View Article and Find Full Text PDF

All-solid-state supercapacitors are known for their safety, stability, and excellent cycling performance. However, their limited voltage window results in lower energy density, restricting their widespread application in practical scenarios. Therefore, in this work, CC/MoO@TiCT negative electrode and MoAl-MnO/CC positive electrode materials are synthesized and prepared by electrochemical deposition co-coating and one-step hydrothermal methods, respectively, and assembled into an asymmetric supercapacitor (ASC) device based on the two electrode materials.

View Article and Find Full Text PDF

An innovative process to multifunctional vitrimer nanocomposites with a percolative MXene minor phase is reported, marking a significant advancement in creating stimuli-repairable, reinforced, sustainable, and conductive nanocomposites at diminished loadings. This achievement arises from a Voronoi-inspired biphasic morphological design via a straight-forward three-step process involving ambient-condition precipitation polymerization of micron-sized prepolymer powders, aqueous powder-coating with 2D MXene (TiCT), and melt-pressing of MXene-coated powders into crosslinked films. Due to the formation of MXene-rich boundaries between thiourethane vitrimer domains in a pervasive low-volume fraction conductive network, a low percolation threshold (≈0.

View Article and Find Full Text PDF

Aqueous zinc-ion hybrid micro-supercapacitors (AZIHMSCs) with high power density, moderate energy density, good cycle life and excellent safety are promising candidates for micro-energy storage. Among them, AZIHMSCs based on TiCT MXene anodes and battery-type cathodes can provide superior performance. However, two-dimensional (2D) TiCT MXene electrodes have an inherent restacking issue and -F surface terminations that hinder ion diffusion and ultimately reduce the energy storage capacity of the corresponding AZIHMSCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!