Imaging of Monoamine Neurotransmitters with Fluorescent Nanoscale Sensors.

Chempluschem

Institute of Physical Chemistry, Göttingen University, Tammannstrasse 2, 37077, Göttingen, Germany.

Published: July 2020

AI Article Synopsis

Article Abstract

Cells use biomolecules to convey information. For instance, neurons communicate by releasing chemicals called neurotransmitters, including several monoamines. The information transmitted by neurons is, in part, coded in the type and amount of neurotransmitter released, the spatial distribution of release sites, the frequency of release events, and the diffusion range of the neurotransmitter. Therefore, quantitative information about neurotransmitters at the (sub)cellular level with high spatiotemporal resolution is needed to understand how complex cellular networks function. So far, various analytical methods have been developed and used to detect neurotransmitter secretion from cells. However, each method has limitations with respect to chemical, temporal and spatial resolution. In this review, we focus on emerging methods for optical detection of neurotransmitter release and discuss fluorescent sensors/probes for monoamine neurotransmitters such as dopamine and serotonin. We focus on the latest advances in near infrared fluorescent carbon nanotube-based sensors and engineered fluorescent proteins for monoamine imaging, which provide high spatial and temporal resolution suitable for examining the release of monoamines from cells in cellular networks.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cplu.202000248DOI Listing

Publication Analysis

Top Keywords

monoamine neurotransmitters
8
cellular networks
8
imaging monoamine
4
neurotransmitters
4
fluorescent
4
neurotransmitters fluorescent
4
fluorescent nanoscale
4
nanoscale sensors
4
sensors cells
4
cells biomolecules
4

Similar Publications

Due to the continuous exposure to bisphenol-A (BPA), the current study was conducted to evaluate taurine's neuroprotective action against BPA's adverse effect on the brain. Rats were grouped into control, BPA-treated rats, and taurine + BPA-treated rats. At the end of the 35-day treatment period, the memory of the rats was evaluated using the novel object test and the Y-maze test.

View Article and Find Full Text PDF

SIRT2 and ALDH1A1 as critical enzymes for astrocytic GABA production in Alzheimer's disease.

Mol Neurodegener

January 2025

Center for Cognition and Sociality, Life Science Institute (LSI), Institute for Basic Science (IBS), Daejeon, Republic of Korea.

Background: Alzheimer's Disease (AD) is a neurodegenerative disease with drastically altered astrocytic metabolism. Astrocytic GABA and HO are associated with memory impairment in AD and synthesized through the Monoamine Oxidase B (MAOB)-mediated multi-step degradation of putrescine. However, the enzymes downstream to MAOB in this pathway remain unidentified.

View Article and Find Full Text PDF

3,4-methylenedioxymethamphetamine (MDMA; commonly referred to as "ecstasy" or "molly") is a substituted amphetamine drug that is used recreationally for its acute psychoactive effects, including euphoria and increased energy, as well as prosocial effects such as increased empathy and feelings of closeness with others. Acute adverse effects can include hyperthermia, dehydration, bruxism, and diaphoresis. Post-intoxication phenomena may include insomnia, anhedonia, anxiety, depression, and memory impairment, which can persist for days following drug cessation.

View Article and Find Full Text PDF

Linezolid, a widely used oxazolidinone antibiotic, exhibits potent activity against resistant bacterial infections but is associated with serotonergic toxicity, primarily due to its inhibition of monoamine oxidase (MAO). MAOs, consisting of MAO-A and MAO-B isoforms, play crucial roles in neurotransmitter metabolism, with implications for neurodegenerative disorders like Parkinson's and Alzheimer's diseases. This study aims to optimize Linezolid's structure to transform it into a selective MAO-B inhibitor.

View Article and Find Full Text PDF

Addiction to psychostimulants, including cocaine, causes widespread morbidity and mortality and is a major threat to global public health. Currently, no pharmacotherapies can successfully treat psychostimulant addiction. The neuroactive effects of cocaine and other psychostimulants have been studied extensively with respect to their modulation of monoamine systems (particularly dopamine); effects on neuropeptide systems have received less attention.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!