Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Effective diagnosis of skin tumours mainly relies on the analysis of the characteristics of the lesion. Automatic detection of malignant skin lesion has become a mandatory task to reduce the risk of human deaths and increase their survival. This article proposes a study of skin lesion classification using transfer learning approach. The transfer learning model uses four different state-of-the-art architectures, namely Inception v3, Residual Networks (ResNet 50), Dense Convolutional Networks (DenseNet 201) and Inception Residual Networks (Inception ResNet v2). These models are trained under the dataset comprising seven different classes of skin lesions. The skin lesion images are pre-processed using image quantization, grayscaling and the Wiener filter before final training step. These models are compared for performance evaluation on different metrics. The present study shows the efficacy of the methodology for automated classification of lesion images.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0954411920939829 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!