A large amount of document has revealed that the orexin system in the reward circuity, including the nucleus accumbens (NAc), contributes to the modification of drug reinforcement. It has proven that the orexin receptors (OXRs) are expressed on dopamine terminals in the NAc; therefore, it can modulate reward-related behaviors. In the present study, the conditioned place preference (CPP) paradigm was used to evaluate the role of OXRs in the NAc in the acquisition and expression of methamphetamine (METH)-induced CPP. Based on previous studies, animals received METH (1 mg/kg; sc) on a 5-day schedule to induce CPP. The rats bilaterally received SB334867, OX1R antagonist, or TCS OX2 29, OX2R antagonist, (1, 10, and 30 nM/0.5 µl DMSO 12%) over five days of conditioning by METH to display the role of OXRs in reward acquisition. Moreover, the rats bilaterally received SB334867 or TCS OX2 29 in the NAc before the post-conditioning test to consider the impact of OXR antagonists on the expression of METH-induced CPP. The data revealed that the administration of SB334867 or TCS OX2 29 in the NAc led to a decrease in the acquisition of METH-induced CPP. Additionally, intra-accumbal injection of OX1R antagonist inhibited the expression of METH-induced CPP, while the OX2R antagonist failed to change this expression. Finally, the intra-NAc microinjection of both OXR antagonists was more effective in inhibiting acquisition than blocking the expression phase of METH. Data from the current study confirms that OXRs in the NAc regulate the reward-related effects of METH.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11064-020-03084-1DOI Listing

Publication Analysis

Top Keywords

meth-induced cpp
16
tcs ox2
12
orexin receptors
8
acquisition expression
8
conditioned place
8
place preference
8
role oxrs
8
oxrs nac
8
rats bilaterally
8
bilaterally received
8

Similar Publications

The modulation of cholecystokinin receptor 1 in the NAc core input from VTA on METH-induced CPP acquisition.

Life Sci

January 2025

College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province, China; Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, Hebei Province, China; Hainan Tropical Forensic Medicine Academician Workstation, Haikou, Hainan Province, China. Electronic address:

Article Synopsis
  • - The study investigates how cholecystokinin (CCK) receptors, specifically CCK1 receptors, play a role in methamphetamine (METH)-induced addiction by affecting the nucleus accumbens core (NAcC) and its connections with other brain areas.
  • - Using a mouse model, researchers created a condition that mimics METH addiction and explored the effects of genetically knocking out CCK receptor subtypes to understand their specific roles in the METH addiction process.
  • - Results showed that disruption of CCK1R in NAcC hindered the development of METH-induced conditioned place preference and altered neuronal excitability, indicating that CCK1R is essential for the synaptic changes in the
View Article and Find Full Text PDF

Although methamphetamine (METH) and other addictive substance use disorders are a major social problem worldwide, appropriate pharmacotherapies have not yet been discovered. Subtype-nonselective opioid receptor antagonists, such as naltrexone (NTX), have been reported to suppress METH addiction, but unclear are the opioid receptor subtypes that are involved in this beneficial effect. To clarify the role of μ-opioid receptors (MOPs), we examined effects of the novel nonpeptidic MOP-selective antagonist UD-030 on the acquisition and expression of METH-induced conditioned place preference (CPP) using behavioral tests in C57BL/6J mice.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of paraventricular thalamus (PVT) neurons in the neural mechanisms behind methamphetamine (METH) addiction, highlighting that these neurons are activated by METH, influencing addiction behaviors.
  • Activation of glutamatergic neurons in PVT enhances METH-induced conditioned place preference (CPP), whereas inhibiting them reduces these addiction-related behaviors.
  • The research establishes a significant neural pathway between PVT and medial prefrontal cortex (mPFC), suggesting that this connection plays a crucial role in controlling METH addiction, though the precise molecular mechanisms remain unclear.
View Article and Find Full Text PDF

Methamphetamine (METH), a stimulant that is extremely addictive, directly affects the central nervous system. METH's abuse and consumption are directly linked to mental illnesses, psychosis, and behavioral and cognitive impairments. It may disrupt the reward system and dopaminergic transmission.

View Article and Find Full Text PDF

Cannabinoid receptor type 1 agonist disrupts methamphetamine-induced conditioned place preference in adolescent male rats.

Neurosci Lett

January 2025

Kerman Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran. Electronic address:

Addiction can be viewed as a state of compulsive engagement in drug use. It is believed that drug-associated memories maintain compulsive drug-seeking behavior. Therefore, disrupting drug-associated memories may reduce drug-seeking behavior.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!