Background: It is well known that lipids are vital for axonal myelin repair. Diffuse axonal injury (DAI) is characterized by widespread axonal injury. The association between serum lipids and DAI is not well known. The purpose of this study was to investigate the associations of serum lipid profile variables (triglycerides, high- and low-density lipoproteins, and total cholesterol) with DAI detected by magnetic resonance imaging (MRI) and with clinical outcome for patients suffering from traumatic brain injury (TBI).
Methods: This study included 176 patients with a history of TBI who had undergone initial serum lipid measurements within 1 week and brain MRIs within 30 days. Based on MRI findings, patients were divided into negative and positive DAI groups.
Results: Of the 176 patients, 70 (39.8%) were assigned to DAI group and 106 (60.2%) patients to non-DAI group. Compared with the non-DAI group, patients with DAI had significantly lower levels of high-density lipoprotein cholesterol (HDL-C) in serum during the first week following TBI. Multivariate analysis identified HDL-C as an independent predictor of DAI. Patients with lower serum HDL-C levels were less likely to regain consciousness within 6 months in TBI patients with DAI lesions identified by MRI.
Conclusions: Plasma levels of HDL-C may be a viable addition to biomarker panels for predicting the presence and prognosis of DAI on subsequent MRI following TBI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12028-020-01043-w | DOI Listing |
PLoS One
January 2025
Department of Biochemistry, College of Medicine, Shihezi University, Shihezi, Xinjiang, China.
Long non-coding RNAs (lncRNAs) are among the most abundant types of non-coding RNAs in the genome and exhibit particularly high expression levels in the brain, where they play crucial roles in various neurophysiological and neuropathological processes. Although ischemic stroke is a complex multifactorial disease, the involvement of brain-derived lncRNAs in its intricate regulatory networks remains inadequately understood. In this study, we established a cerebral ischemia-reperfusion injury model using middle cerebral artery occlusion (MCAO) in male Sprague-Dawley rats.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha 410078, Hunan, China.
Spinal cord injury (SCI) remains a formidable challenge in biomedical research, as the silencing of intrinsic regenerative signals in most spinal neurons results in an inability to reestablish neural circuits. In this study, we found that neurons with low axonal regeneration after SCI showed decreased extracellular signal-regulated kinase (ERK) phosphorylation levels. However, the expression of dual specificity phosphatase 26 (DUSP26)─which negatively regulates ERK phosphorylation─was reduced considerably in neurons undergoing spontaneous axonal regeneration.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.
Peripheral nerve injury is a common disease resulting in reversible and irreversible impairments of motor and sensory functions. In addition to conventional surgical interventions such as nerve grafting and neurorrhaphy, nerve guidance conduits are used to effectively support axonal growth without unexpected neuroma formation. However, there are still challenges to secure tissue-mimetic mechanical and electrophysiological properties of the conduit materials.
View Article and Find Full Text PDFTher Adv Neurol Disord
January 2025
Institute for Infectious Diseases, University of Bern, Bern, Switzerland.
Background: Serum neurofilament light chain (sNfL) is a biomarker for neuro-axonal injury.
Objectives: To assess sNfL's utility as a diagnostic marker for Lyme neuroborreliosis (LNB).
Methods: We compared serum and CSF NfL levels in LNB patients and age-matched controls.
Burns Trauma
January 2025
The Orthopaedic Center, The Affiliated Wenling Hospital of Wenzhou Medical University (The First People's Hospital of Wenling), 333 Chuanan Road, Chengxi Street, Wenling City, Zhejiang Province 317500, China.
Background: Neuronal structure is disrupted after spinal cord injury (SCI), causing functional impairment. The effectiveness of exercise therapy (ET) in clinical settings for nerve remodeling post-SCI and its underlying mechanisms remain unclear. This study aims to explore the effects and related mechanisms of ET on nerve remodeling in SCI rats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!