Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
One of the critical problems for practical application of microbial fuel cells (MFCs) is the poor electron transfer between microbial cells and anode. Hence, good biocompatibility and high specific surface area of electrodes are indispensable for MFC scale-up. In this study, three-dimensional electrode MFC (3DEMFC) was developed by filling biochar between anode and cathode. Three types of biochar electrodes (biochar, biochar and zeolite mixture, and MgO-modified biochar) were employed, and the performance of 3DEMFCs treating nitrogen in wastewater was investigated. The results showed that the highest power density of MFCs was 4.45 ± 0.21 W m achieved by 3DEMFC filled with MgO-modified biochar, and the overall power generation of 3DEMFCs (2.40 ± 0.28 ~ 4.45 ± 0.21 W m) was higher than that of MFC without biochar (1.31 ± 0.24 W m). The linear sweep voltammetry (LSV) results also demonstrated biochar addition to MFC was conducive to electron transfer between microbes and anode and MgO-modified biochar presented the highest coulombs transfer ability. Moreover, the highest removal efficiencies of ammonium, total nitrogen, and COD (93.6 ± 3.2%, 84.8 ± 2%, and 91.6 ± 1.3%, respectively) were achieved by 3DEMFC containing MgO-modified biochar, and simultaneous short-cut nitrification and denitrification were observed in MFCs. Furthermore, the SEM images displayed the bacteria adhesion on biochar and the biofilm dry weights of MgO-modified biochar after experiment was the highest of 103 ± 4 mg g among three kinds of biochar electrodes. Therefore, the power generation and nitrogen removal conspicuously enhanced in 3DEMFCs and biochar exhibited excellent biocompatibility and distinct electrochemical performance for MFC practical applications in wastewater treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00449-020-02402-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!