Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Disinfection is used to deactivate pathogens in drinking water. However, disinfectants react with natural organic matter present in water to form disinfection by-products (DBPs). While a few of these DBPs have been studied extensively and are regulated in many countries, new unregulated DBPs (UR-DBPs) have also recently been identified in drinking water. The UR-DBPs are considered to be more toxic than regulated DBPs (R-DBPs). To understand the occurrence of UR-DBPs in a water distribution network (WDN), this research presents an approach to predicting the behaviour of emerging UR-DBPs such as dichloroacetonitrile (DCAN), trichloropropanone (TCP), and trichloronitromethane (TCNM) in WDNs. Water quality data, generated by sampling and laboratory analysis of 12 small communities, was used to develop predictive models. A framework was also proposed alongside the predictive models to estimate the concentration of emerging UR-DBPs under limited water quality sampling information. Moreover, the relationship between emerging UR-DBP concentrations and their identified predictors was further observed and evaluated by developing contour profiles. DCAN and TCP predictive models have coefficient of determination (R) > 85%, whereas for TCNM model, the R was > 65%. Water quality parameters including water temperature, turbidity, conductivity, and dissolved organic carbon concentrations were identified as key predictors. Similarly, trichloroacetic acid and bromodichloromethane were identified as key predictors among DBP families, to predict the occurrence of emerging UR-DBPs. Developed models and relationships between the UR-DBPs and predictors can help water utilities and regulators to manage the occurrence of UR-DBPs in small WDNs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10661-020-08468-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!