Interaction uncertainties between tidal energy devices and marine animals have the potential to impede the tidal energy industry as it moves closer towards commercial-scale array installations. Developing standardised environmental impact assessment (EIA) practices would allow for potential impact concerns to the marine environment to be identified and mitigated early during project development. In an effort to help formulate a standardised EIA framework that addresses knowledge gaps in fish-current interactions at tidal energy candidate sites, Scherelis et al. [1] presented a case study for investigating changes in fish aggregations in response to changing environmental conditions including tidal currents at a tidal energy candidate site in Australia prior to turbine installation. Here, we present the dataset utilised for this study titled "Investigating biophysical linkages at tidal energy candidate sites: a case study for combining environmental assessment and resource characterisation" [1]. The dataset includes tidal current information from an Acoustic Doppler Current Profiler (ADCP), volume backscattering measurements from a four-frequency biological echosounder (Acoustic Zooplankton and Fish Profiler - AZFP) as an indicator for fish biomass, and fish aggregation metrics calculated from volume backscatter in post-processing. ADCP and AZFP were installed on a bottom-mounted mooring and engaged in a concurrent sampling plan for ∼2.5 months from December 2018 to February 2019. The mooring was deployed in the Banks Strait, a tidal energy candidate site located in the northeast of Tasmania, Australia, at a location favourable for tidal turbine installations considering current speed, depth, substrate, sediment type and proximity to shore. The ADCP dataset includes current velocity and direction measurements at 1 m vertical and 1-min time intervals. The raw AZFP dataset includes volume backscattering strength collected in 4-s time intervals with a vertical resolution of 0.072 m in raw, and 0.1 m in pre-processed form. Several post-processing steps were implemented to mitigate changes in background noise due to current speed and wind stress, and to isolate acoustic fish returns from remaining scattering sources. Once isolated, volume backscatter containing fish targets underwent post-processing to determine fish aggregation metrics including density, abundance, centre of mass, dispersion,% water column occupied, evenness, and index for aggregation. Each aggregation metric was then binned by minute matched with corresponding environmental conditions for current speed, shear, temperature, diel stage, and tidal stage. Raw and processed datasets for the AZFP and ADCP are provided. Post-processed data includes the derived fish aggregation metrics along with corresponding environmental conditions. The described datasets are freely available on the Australian Ocean Data Network (AODN).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7334290PMC
http://dx.doi.org/10.1016/j.dib.2020.105873DOI Listing

Publication Analysis

Top Keywords

tidal energy
28
energy candidate
20
candidate site
12
environmental conditions
12
dataset includes
12
fish aggregation
12
aggregation metrics
12
current speed
12
tidal
11
site australia
8

Similar Publications

This paper proposes a hybrid stochastic-robust optimization framework for sizing a photovoltaic/tidal/fuel cell (PV/TDL/FC) system to meet an annual educational building demand based on hydrogen storage via unscented transformation (UT), and information gap decision theory-based risk-averse strategy (IGDT-RA). The hybrid framework integrates the strengths of UT for scenario generation and IGDT-RA (hybrid UT-IGDT-RA) for optimizing the system robustness and maximum uncertainty radius (MRU) of building energy demand and renewable resource generation. The deterministic model focuses on minimizing the cost of energy production over the project's lifespan (CEPLS) and considers a reliability constraint defined as the demand shortage probability (DSHP).

View Article and Find Full Text PDF

[Effect of extra corporeal reducing pre-load on pulmonary mechanical power in patients with acute respiratory distress syndrome].

Zhonghua Wei Zhong Bing Ji Jiu Yi Xue

December 2024

Department of Public Utilities Development, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, China.

Objective: To explore the effects of veno-venous extra corporeal carbon dioxide removal (V-V ECCOR) on local mechanical power and gas distribution in the lungs of patients with mild to moderate acute respiratory distress syndrome (ARDS) receiving non-invasive ventilation.

Methods: Retrospective research methods were conducted. Sixty patients with mild to moderate ARDS complicated with renal insufficiency who were transferred to the respiratory intensive care unit (RICU) through the 96195 platform critical care transport green channel from January 2018 to January 2020 at the collaborative hospitals of Henan Provincial People's Hospital were enrolled.

View Article and Find Full Text PDF

Electrochemical In Situ Characterization Techniques in the Field of Energy Conversion.

Small Methods

January 2025

Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China.

With the proposal of the "carbon peak and carbon neutrality" goals, the utilization of renewable energy sources such as solar energy, wind energy, and tidal energy has garnered increasing attention. Consequently, the development of corresponding energy conversion technologies has become a focal point. In this context, the demand for electrochemical in situ characterization techniques in the field of energy conversion is gradually increasing.

View Article and Find Full Text PDF

The Great Rann of Kachchh is a sabkha terrain with a thick succession of Quaternary to Late Holocene sediments, deposited during high sea level after the Last Glacial Maxima. Geomorphologically, the Great Rann of Kachchh is subdivided into Bet Zone, Linear Trench Zone, Great Barren Zone, and Banni Plain. The Bet zone is a slightly elevated flat surface comprising a complex network of bets and interbet channels-the geomorphic entities developed as complex interplay of sea level and coseismic tectonic activity during the Holocene.

View Article and Find Full Text PDF

Subterranean estuaries (STEs) are critical ecosystems at the interface of meteoric groundwater and subsurface seawater that are threatened by sea level rise. To characterize the influence of tides and waves on the STE microbial community, we collected porewater samples from a high-energy beach STE at Stinson Beach, California, USA, over the two-week neap-spring tidal transition during both a wet and dry season. The microbial community, analyzed by 16S rRNA gene (V4) amplicon sequencing, clustered according to consistent physicochemical features found within STEs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!