AI Article Synopsis

  • In bone tissue engineering, combining autologous cells with osteoconductive scaffolds faces challenges like insufficient vascular growth in biomaterials.
  • The study aimed to develop an alginate-based hydrogel that improves bone defect regeneration through testing the viability of bone marrow-derived mesenchymal stem cells (BM-MSCs) and endothelial cells (ECs) in the hydrogel.
  • Results showed that after implantation in mice, the hydrogel supported the presence of human cells and enhanced blood vessel formation, with BM-MSCs promoting better vascularization compared to ECs alone, indicating the hydrogel's potential for bone regeneration and vascular growth.

Article Abstract

In bone tissue engineering, autologous cells are combined with osteoconductive scaffolds and implanted into bone defects. The major challenge is the lack of post-implantation vascular growth into biomaterial. The objective of the present study was to develop a new alginate-based hydrogel that enhances the regeneration of bone defects after surgery. The viability of human bone marrow-derived mesenchymal stem cells (BM-MSCs) or human endothelial cells (ECs) cultured alone or together on the hydrogel was analyzed for 24 and 96 h. After seeding, the cells self-assembled and aggregated to form clusters. For functional validation, empty or cellularized hydrogel matrices were implanted ectopically at subcutaneous sites in mice. After 2 months, the matrices were explanted. Transplanted human cells were present, and we observed vessels expressing human von Willebrand factor (resulting from the incorporation of transplanted ECs into neovessels and/or the differentiation of BM-MSCs into ECs). The addition of BM-MSCs improved host vascularization and neovessel formation from human cells, relative to ECs alone. Although we did not observe bone formation, the transplanted BM-MSCs were able to differentiate into osteoblasts. This new biomaterial provided an appropriate three-dimensional environment for transplanted cells and has a high angiogenic capacity and an osteogenic potential.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7337169PMC
http://dx.doi.org/10.1089/biores.2020.0010DOI Listing

Publication Analysis

Top Keywords

alginate-based hydrogel
8
high angiogenic
8
angiogenic capacity
8
osteogenic potential
8
bone defects
8
human cells
8
cells
7
bone
5
human
5
hydrogel high
4

Similar Publications

Circadian rhythm disruption, commonly caused by factors such as jet lag and shift work, is increasingly recognized as a critical factor impairing wound healing. Although melatonin is known to regulate circadian rhythms and has potential in wound repair, its clinical application is limited by low bioavailability. To address these challenges, we developed an alginate-based dual-network hydrogel as a delivery system for melatonin, ensuring its stable and sustained release at the wound site.

View Article and Find Full Text PDF

Progress in Research on Metal Ion Crosslinking Alginate-Based Gels.

Gels

December 2024

State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Jinan 250353, China.

Alginate is an important natural biopolymer and metal ion-induced gelation is one of its most significant functional properties. Alginate-based hydrogels crosslinked with metal ions are commonly utilized in the food, biomedical, tissue engineering, and environment fields. The process of metal ion-induced alginate gelation has been the subject of thorough research over the last few decades.

View Article and Find Full Text PDF

In this preliminary study, the long-term effects of calcium chloride crosslinking concentration on viability of 16HBE14o- human bronchial epithelial cells embedded in alginate-extracellular matrix (ECM) or alginate-methylcellulose-ECM hydrogels have been investigated. There is currently a limited understanding regarding the effects of crosslinking solution concentration on lung epithelial cells embedded in hydrogel. Furthermore, the effects of calcium chloride concentration in crosslinking solutions on other cell types have not been reported regarding whether the addition of viscosity and stiffness tuning agents such as methylcellulose will alter the responses of cells to changes in calcium chloride concentration in crosslinking solutions.

View Article and Find Full Text PDF

Tendon-mimicking anisotropic alginate-based double-network composite hydrogels with enhanced mechanical properties and high impact absorption.

Carbohydr Polym

March 2025

School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Department of MetaBioHealth, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea. Electronic address:

Tendons are anisotropic tissues with exceptional mechanical properties, which result from their unique anisotropic structure and mechanical behavior under stress. While research has focused on replicating anisotropic structures and mechanical properties of tendons, fewer studies have examined their specific mechanical behaviors. Here, we present a simple method for creating calcium-crosslinked alginate-based double-network hydrogels that mimics tendons by exhibiting anisotropic structure, high mechanical strength and toughness, and a distinctive "toe region" when stretched.

View Article and Find Full Text PDF

Glioblastoma (GBM) is a notoriously aggressive primary brain tumor characterized by elevated recurrence rates and poor overall survival despite multimodal treatment. Local treatment strategies for GBM are safer and more effective alternatives to systemic chemotherapy, directly tackling residual cancer cells in the resection cavity by circumventing the blood-brain barrier. Molecularly imprinted polymers (MIPs) are promising drug delivery systems due to their high-affinity binding cavities that enable tailored release kinetics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!