Background: The cardiac progenitor cells provide a valuable method for myocardial infarction related heart failure therapies. But cardiac progenitor cell quickly loses the proliferation abilities during the myocardial infarction. In this paper, we aim to explore the role of lncRNA CRNDE in the modulation of cardiac progenitor cell reproduction and migration.
Methods: Cardiac progenitor cells were isolated from neonatal adult Sprague-Dawley rats by removing the heart and homogenizing the tissue. Various siRNAs and RNA mimics were co-transfected to the cells. A list of characterization methods, including qRT-PCR, Western blotting, luciferase assay, CCK-8 assay, and EdU incorporation assay, were utilized to verify the roles and interactions of CRNDE, miR-181a, and LYRM1 in cardiac progenitor cells' proliferation and migration potentials.
Results: LncRNA CRNDE expressions were substantially promoted in the CoCl2-related hypoxia cardiac progenitor cell model. CRNDE suppression inhibited cardiac progenitor cell reproduction and migration under hypoxic conditions. The miR-181a-inhibitor restored the reproduction and migration potentials of cardiac progenitor cells after CRNDE knockdown in hypoxia. LYR motif containing 1 (LYRM1) was a target of miR-181a, and miR-181a negatively modulated its expressions. LYRM1 knockdowns inhibited miR-181a-inhibitor's protective effects for cardiac progenitor cell functions in hypoxia.
Conclusions: Our experiments and analysis demonstrated that CRNDE could modulate cardiac progenitor cell proliferation and migration potentials via the miR-181a/LYRM1 axis in hypoxia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7330284 | PMC |
http://dx.doi.org/10.21037/jtd.2020.03.22 | DOI Listing |
Acute lymphoblastic leukemia (ALL) is a malignant condition of lymphoid progenitor cells that primarily affects the pediatric population, but also adults. The 5-year survival rate is 90% in children and approximately 40% in adults, with survival increasing through the use of peripheral stem cell allotransplantation (SCT). The relapse rate after stem cell transplantation (SCT) in adult acute lymphoblastic leukemia (ALL) patients ranges from 35% to 45%, making relapse a major cause of death in this population.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
Abnormal development of the second heart field significantly contributes to congenital heart defects, often caused by disruptions in tightly regulated molecular pathways. , a gene encoding a protein with SET and MYND domains, is essential for heart and skeletal muscle development. Mutations in SMYD1 result in severe cardiac malformations and misregulation of expression in mammals.
View Article and Find Full Text PDFAntioxidants (Basel)
January 2025
Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA.
Our group has recently demonstrated that exercise intervention affects the release and function of bone marrow endothelial progenitor cell-derived extracellular vesicles (EVs) in transgenic hypertensive mice. Whether such an exercise regimen can impact circulating EVs (cEVs) remains unknown. In this study, we investigated the influence of exercise on cEV level and function.
View Article and Find Full Text PDFCan J Physiol Pharmacol
January 2025
Dalhousie University, Department of Physiology and Biophysics, Halifax, Canada;
A growing body of evidence suggest that the stem cell antigen-1 expressing (Sca-1) cells in the heart may be the cardiac endothelial stem/progenitor cells. Their endothelial cell (EC) functions, and their role in RV physiology and pathophysiology of right heart failure (RHF) remains poorly defined. This study investigated EC characteristics of rat cardiac Sca-1 cells, assessed spatial distribution and studied changes in Sca1 cells during RV remodelling in monocrotaline (MCT) model of pulmonary hypertension and RV remodeling.
View Article and Find Full Text PDFFront Cell Dev Biol
January 2025
Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
The Neural Crest cells are multipotent progenitor cells formed at the neural plate border that differentiate and give rise to a wide range of cell types and organs. Directional migration of NC cells and their correct positioning at target sites are essential during embryonic development, and defects in these processes results in congenital diseases. The NC migration begins with the epithelial-mesenchymal transition and extracellular matrix remodeling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!