A hypothesized rise in oxygen levels in the Neoproterozoic, dubbed the Neoproterozoic Oxygenation Event, has been repeatedly linked to the origin and rise of animal life. However, a new body of work has emerged over the past decade that questions this narrative. We explore available proxy records of atmospheric and marine oxygenation and, considering the unique systematics of each geochemical system, attempt to reconcile the data. We also present new results from a comprehensive COPSE biogeochemical model that combines several recent additions, to create a continuous model record from 850 to 250 Ma. We conclude that oxygen levels were intermediate across the Ediacaran and early Palaeozoic, and highly dynamic. Stable, modern-like conditions were not reached until the Late Palaeozoic. We therefore propose that the terms Neoproterozoic Oxygenation Window and Palaeozoic Oxygenation Event are more appropriate descriptors of the rise of oxygen in Earth's atmosphere and oceans.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7333907 | PMC |
http://dx.doi.org/10.1098/rsfs.2019.0137 | DOI Listing |
Nutrients
January 2025
Cambridge Centre for Sport and Exercise Sciences (CCSES), Faculty of Science and Engineering, Anglia Ruskin University, Cambridge CB1 1PT, UK.
Background/objectives: There is current scientific interest pertaining to the therapeutic effects of olive-derived polyphenols (ODPs), in particular their associated anti-inflammatory properties, following the wealth of research surrounding the physiological impact of the Mediterranean Diet (MD). Despite this association, the majority of the current literature investigates ODPs in conjunction with metabolic diseases. There is limited research focusing on ODPs and acute inflammation following exercise, regardless of the knowledge surrounding the elevated inflammatory response during this time.
View Article and Find Full Text PDFBiometrics
January 2025
Kaiser Permanente Washington Health Research Institute, Seattle, WA 98101, United States.
Distributed lag models (DLMs) estimate the health effects of exposure over multiple time lags prior to the outcome and are widely used in time series studies. Applying DLMs to retrospective cohort studies is challenging due to inconsistent lengths of exposure history across participants, which is common when using electronic health record databases. A standard approach is to define subcohorts of individuals with some minimum exposure history, but this limits power and may amplify selection bias.
View Article and Find Full Text PDFFront Med (Lausanne)
January 2025
Department of General Surgery, Baskent University, Istanbul, Türkiye.
Introduction: Various reports have confirmed that low skeletal muscle mass, a proxy marker of sarcopenia, can be a risk factor for surgical and oncological outcomes in colon cancer. We aimed to investigate the effects of skeletal muscle mass index (SMMI) on postoperative complications, overall survival (OS), and disease-free survival (DFS) in older patients with colon cancer who underwent elective curative colon resections.
Materials And Methods: Patients over 65 years old with stage I-III colon cancer who underwent elective curative colon resections between January 2015 and December 2023 were included in this single-center retrospective longitudinal study.
J Cereb Blood Flow Metab
January 2025
A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
Zero echo time (zero-TE) pulse sequences provide a quiet and artifact-free alternative to conventional functional magnetic resonance imaging (fMRI) pulse sequences. The fast readouts (<1 ms) utilized in zero-TE fMRI produce an image contrast with negligible contributions from blood oxygenation level-dependent (BOLD) mechanisms, yet the zero-TE contrast is highly sensitive to brain function. However, the precise relationship between the zero-TE contrast and neuronal activity has not been determined.
View Article and Find Full Text PDFR Soc Open Sci
January 2025
Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa 275-8564, Japan.
Corals have been used as geochemical proxies since the 1970s, playing a prominent role in paleoceanography. However, it has not been well elucidated how aqueous ions sourced from seawater are transported and precipitated in coral skeletons. There are limited foundational methods to differentiate and quantify biogenic and abiogenic effects during skeletal formation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!