Drug release kinetics plays an important role in determining the mechanism of drug release, which in turn helps in formulating controlled/sustained release formulations. In our study, different concentrations of green tea polyphenols (GTP) were encapsulated into casein nanoparticles which showed a maximum encapsulation efficiency (76.9%) at a GTP concentration of 5 mg/mL. The casein nanoparticles were characterized through particle size analysis, zeta potential, AFM, and HR SEM, followed by molecular docking studies, which confirmed the binding of GTP to casein nanoparticles. release studies carried out at different temperatures and pH showed no significant difference in the release pattern, but the release was prolonged even up to 48 h. On varying pH of the release medium, an increase in the percentage of release was observed as the pH shifted from acidic to basic. All release data showed good correlation with Zero order kinetics, an ideal model for release of drugs from nanoparticulate sustained release formulations, with anomalous mode of drug transport. Antioxidant activity of the released GTP determined through DPPH assay showed potent antioxidant effect of GTP even after 48 h of its release. Our data indicated that casein nanoparticles could be used as a potent vehicle for the delivery of GTP for achieving a sustained release.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6934954 | PMC |
http://dx.doi.org/10.22037/ijpr.2019.1100715 | DOI Listing |
Int J Biol Macromol
January 2025
National Engineering Institute for the Research and Development of Endangered Medicinal Resources in Southwest China, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China; Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-Di Herbs, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China. Electronic address:
Zein-based nanoparticles (NPs) have attracted considerable attention as potential delivery systems for bioactive compounds. However, their application has been limited by poor stability and redispersibility. In this study, we addressed these challenges by fabricating zein nanocarriers using branching structural fructo-oligosaccharides (P-FOS) and sodium caseinate (NaCas) as costabilizers.
View Article and Find Full Text PDFFoods
January 2025
A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova, Moscow 119991, Russia.
The hydrolysis of proteins by proteases (proteolysis) plays a significant role in biology and food science. Despite the importance of proteolysis, a universal quantitative model of this phenomenon has not yet been created. This review considers approaches to modeling proteolysis in a batch reactor that take into account differences in the hydrolysis of the individual peptide bonds, as well as the limited accessibility (masking) for the enzymes of some hydrolysis sites in the protein substrate.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China. Electronic address:
In this study, genipin served as crosslinker to combine sodium caseinate (SC) and chitosan oligosaccharide (COS), aiming to improve the physicochemical properties and encapsulation efficiency of SC in delivering hydrophobic nutritional factors. The genipin crosslinked complex of SC and COS (GSCC) was characterized by circular dichroism spectrum and infrared spectrum analyses. Nanoparticles produced from GSCC (GSCCNP) exhibited a superior hydrophilicity compared to those derived from SC (SCNP).
View Article and Find Full Text PDFExtracell Vesicles Circ Nucl Acids
May 2024
MILCH and Novel Therapeutics Lab, Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
This study aimed to systematically compare four casein micelle removal methods on the particle and protein characteristics of the isolated human milk EVs. The defatted milk was treated with 1% sodium citrate, 20 mM ethylenediaminetetraacetic acid (EDTA), 1% acetic acid, or 1% chymosin/calcium chloride for 30 min at 4 °C to remove casein micelles. EV isolation was performed using qEV size exclusion chromatography.
View Article and Find Full Text PDFBMC Biotechnol
December 2024
Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
This study investigated the ability of Phyllanthus emblica encapsulated within chitosan-coated casein (CS-casein-Amla) nanoparticles to inhibit the growth of multi-drug-resistant Pseudomonas aeruginosa (P. aeruginosa) bacteria and prevent the formation of biofilms. The MDR strains underwent screening, and the morphological characteristics of the resulting nanoparticles were assessed using SEM, DLS, and FTIR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!