To achieve the full potential of pharmacogenomics, one must accurately predict the functional out comes that arise from amino acid substitutions in proteins. Classically, researchers have focused on understanding the consequences of individual substitutions. However, literature surveys have shown that most substitutions were created at evolutionarily conserved positions. Awareness of this bias leads to a shift in perspective, from considering the outcomes of individual substitutions to understanding the roles of individual protein positions. Conserved positions tend to act as "toggle" switches, with most substitutions abolishing function. However, nonconserved positions have been found equally capable of affecting protein function. Indeed, many nonconserved positions act like functional dimmer switches ("rheostat" positions): This is revealed when multiple substitutions are made at a single position. Each substitution has a different functional outcome; the set of substitutions spans arange of outcomes. Finally, some nonconserved positions appear neutral, capable of accommodating all amino acid types without modifying function. This manuscript reviews the currently-known properties of rheost at positions, with examples shown for pyruvate kinase, organic anion transporting polypeptide 1B1, the beta-lactamase inhibitory protein, and angiotensin-converting enzyme 2. Outcomes observed for rheostat positions have implications for the rational design of drug analogs and allosteric drugs. Furthermore, this new framework - comprising three types of protein positions - provides a new approach to interpreting disease and population-based databases of amino acid changes. In conclusion, although a full understanding of substitution out comes at rheostat positions poses a challenge, utilization of this new frame of reference will further advance the application of pharmacogenomics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7276102PMC
http://dx.doi.org/10.1007/s00044-020-02582-9DOI Listing

Publication Analysis

Top Keywords

rheostat positions
12
positions
12
protein positions
12
amino acid
12
nonconserved positions
12
individual substitutions
8
conserved positions
8
function nonconserved
8
substitutions
7
protein
5

Similar Publications

Fast and broadband spatial-photoresistance modulation in graphene-silicon heterojunctions.

Nanophotonics

August 2024

Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Materials Science and Engineering, Nanjing, P.R. China.

Different types of devices with modulable resistance are attractive for the significant potential applications such as sensors, information storage, computation, etc. Although extensive research has been reported on resistance effects, there is still a need for exploring new mechanisms that offer advantages of low power consumption, high sensitivity, and long-term stability. Here, we report a graphene-Si based spatial-dependence photo-rheostat (SDPR), which enables bipolar resistance modulation in the range of 5 mm with a resistance sensitivity exceeding 1,000 Ω/mm at operating wavelengths from visible to near infrared band (1,550 nm).

View Article and Find Full Text PDF

Dynamics-based protein network features accurately discriminate neutral and rheostat positions.

Biophys J

October 2024

Department of Physics, Center for Biological Physics, Arizona State University, Tempe, Arizona. Electronic address:

In some proteins, a unique class of nonconserved positions is characterized by their ability to generate diverse functional outcomes through single amino acid substitutions. Due to their ability to tune protein function, accurately identifying such "rheostat" positions is crucial for protein design, for understanding the impact of mutations observed in humans, and for predicting the evolution of pathogen drug resistance. However, identifying rheostat positions has been challenging, due-in part-to the absence of a clear structural relationship with binding sites.

View Article and Find Full Text PDF

Rheostat positions, which can be substituted with various amino acids to tune protein function across a range of outcomes, are a developing area for advancing personalized medicine and bioengineering. Current methods cannot accurately predict which proteins contain rheostat positions or their substitution outcomes. To compare the prevalence of rheostat positions in homologs, we previously investigated their occurrence in two pyruvate kinase (PYK) isozymes.

View Article and Find Full Text PDF

The LAT Rheostat as a Regulator of Megakaryocyte Activation.

Thromb Haemost

October 2024

Blood Research Institute, Versiti Blood Center of Wisconsin, Milwaukee, Wisconsin, United States.

Background:  Specifically positioned negatively charged residues within the cytoplasmic domain of the adaptor protein, linker for the activation of T cells (LAT), have been shown to be important for efficient phosphorylation of tyrosine residues that function to recruit cytosolic proteins downstream of immunoreceptor tyrosine-based activation motif (ITAM) receptor signaling. LAT tyrosine 132-the binding site for PLC-γ2-is a notable exception, preceded instead by a glycine, making it a relatively poor substrate for phosphorylation. Mutating Gly to an acidic residue has been shown in T cells to enhance ITAM-linked receptor-mediated signaling.

View Article and Find Full Text PDF

Advances in personalized medicine and protein engineering require accurately predicting outcomes of amino acid substitutions. Many algorithms correctly predict that evolutionarily-conserved positions show "toggle" substitution phenotypes, which is defined when a few substitutions at that position retain function. In contrast, predictions often fail for substitutions at the less-studied "rheostat" positions, which are defined when different amino acid substitutions at a position sample at least half of the possible functional range.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!