Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Active optical control over matter is desirable in many scientific disciplines, with prominent examples in all-optical magnetic switching, light-induced metastable or exotic phases of solids and the coherent control of chemical reactions. Typically, these approaches dynamically steer a system towards states or reaction products far from equilibrium. In solids, metal-to-insulator transitions are an important target for optical manipulation, offering ultrafast changes of the electronic and lattice properties. The impact of coherences on the efficiencies and thresholds of such transitions, however, remains a largely open subject. Here, we demonstrate coherent control over a metal-insulator structural phase transition in a quasi-one-dimensional solid-state surface system. A femtosecond double-pulse excitation scheme is used to switch the system from the insulating to a metastable metallic state, and the corresponding structural changes are monitored by ultrafast low-energy electron diffraction. To govern the transition, we harness vibrational coherence in key structural modes connecting both phases, and observe delay-dependent oscillations in the double-pulse switching efficiency. Mode-selective coherent control of solids and surfaces could open new routes to switching chemical and physical functionalities, enabled by metastable and non-equilibrium states.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41586-020-2440-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!