Bone marrow fibrosis (BMF) is a rare complication in acute leukemia. In pediatrics, it predominantly occurs in acute megakaryoblastic leukemia (AMKL) and especially in patients with trisomy 21, called myeloid leukemia in Down syndrome (ML-DS). Defects in mesenchymal stromal cells (MSC) and cytokines specifically released by the myeloid blasts are thought to be the main drivers of fibrosis in the bone marrow niche (BMN). To model the BMN of pediatric patients with AMKL in mice, we first established MSCs from pediatric patients with AMKL ( = 5) and ML-DS ( = 9). Healthy donor control MSCs ( = 6) were generated from unaffected children and adolescents ≤18 years of age. Steady-state analyses of the MSCs revealed that patient-derived MSCs exhibited decreased adipogenic differentiation potential and enrichment of proliferation-associated genes. Importantly, TGFB1 exposure promoted early profibrotic changes in all three MSC entities. To study BMF induction for longer periods of time, we created an humanized artificial BMN subcutaneously in immunodeficient NOD.Cg-Prkdc Il2rg/SzJ mice, using a mixture of MSCs, human umbilical vein endothelial cell, and Matrigel. Injection of AMKL blasts as producers of TGFB1 into this BMN after 8 weeks induced fibrosis grade I/II in a dose-dependent fashion over a time period of 4 weeks. Thus, our study developed a humanized mouse model that will be instrumental to specifically examine leukemogenesis and therapeutic targets for AMKL blasts in future. IMPLICATIONS: TGFB1 supports fibrosis induction in a pediatric AMKL model generated with patient-derived MSCs. VISUAL OVERVIEW: http://mcr.aacrjournals.org/content/molcanres/18/10/1603/F1.large.jpg.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1541-7786.MCR-20-0091DOI Listing

Publication Analysis

Top Keywords

mesenchymal stromal
8
stromal cells
8
tgfb1 supports
8
supports fibrosis
8
fibrosis induction
8
induction pediatric
8
acute megakaryoblastic
8
megakaryoblastic leukemia
8
bone marrow
8
pediatric patients
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!