Group 2 innate lymphoid cells (ILC2s) are implicated in host defense and inflammatory disease, but these potential functional roles need more precise definition, particularly using advanced technologies to better target ILC2s and engaging experimental models that better manifest both acute infection and chronic, even lifelong, disease. In this study, we use a mouse model that applies an improved genetic definition of ILC2s via -conditional gene targeting and takes advantage of a distinct progression from acute illness to chronic disease, based on a persistent type 2 immune response to respiratory infection with a natural pathogen (Sendai virus). We first show that ILC2s are activated but are not required to handle acute illness after respiratory viral infection. In contrast, we find that this type of infection also activates ILC2s chronically for IL-13 production and consequent asthma-like disease traits that peak and last long after active viral infection is cleared. However, to manifest this type of disease, the -dependent myeloid-macrophage lineage is also active at two levels: first, at a downstream level, this lineage provides lung tissue macrophages (interstitial macrophages and tissue monocytes) that represent a major site of gene expression in the diseased lung; and second, at an upstream level, this same lineage is required for gene induction that is necessary to activate ILC2s for participation in disease at all, including IL-13 production. Together, these findings provide a revised scheme for understanding and controlling the innate immune response leading to long-term postviral lung diseases with features of asthma and related progressive conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7415724PMC
http://dx.doi.org/10.4049/jimmunol.2000181DOI Listing

Publication Analysis

Top Keywords

group innate
8
innate lymphoid
8
lymphoid cells
8
myeloid-macrophage lineage
8
long-term postviral
8
postviral lung
8
acute illness
8
immune response
8
viral infection
8
il-13 production
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!