A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Individualised risk prediction model for new-onset, progression and regression of chronic kidney disease in a retrospective cohort of patients with type 2 diabetes under primary care in Hong Kong. | LitMetric

Objectives: This study is aimed to develop and validate a prediction model for multistate transitions across different stages of chronic kidney disease (CKD) in patients with type 2 diabetes mellitus under primary care.

Setting: We retrieved the anonymised electronic health records of a population-based retrospective cohort in Hong Kong.

Participants: A total of 26 197 patients were included in the analysis.

Primary And Secondary Outcome Measures: The new-onset, progression and regression of CKD were defined by the transitions of four stages that were classified by combining glomerular filtration rate and urine albumin-to-creatinine ratio. We applied a multiscale multistate Poisson regression model to estimate the rates of the stage transitions by integrating the baseline demographic characteristics, routine laboratory test results and clinical data from electronic health records.

Results: During the mean follow-up time of 1.8 years, there were 2632 patients newly diagnosed with CKD, 1746 progressed to the next stage and 1971 regressed into an earlier stage. The models achieved the best performance in predicting the new-onset and progression with the predictors of sex, age, body mass index, systolic blood pressure, diastolic blood pressure, serum creatinine, haemoglobin A1c, total cholesterol, low-density lipoprotein, high-density lipoprotein, triglycerides and drug prescriptions.

Conclusions: This study demonstrated that individual risks of new-onset and progression of CKD can be predicted from the routine physical and laboratory test results. The individualised prediction curves developed from this study could potentially be applied to routine clinical practices, to facilitate clinical decision making, risk communications with patients and early interventions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7348646PMC
http://dx.doi.org/10.1136/bmjopen-2019-035308DOI Listing

Publication Analysis

Top Keywords

new-onset progression
16
prediction model
8
progression regression
8
chronic kidney
8
kidney disease
8
retrospective cohort
8
patients type
8
type diabetes
8
transitions stages
8
electronic health
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!