Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Subconcussive hits to the head and physical fitness both have been associated with alterations in white matter (WM) microstructure in partly overlapping areas of the brain. The aim of the present study was to determine whether WM damage associated with repeated exposure to subconcussive hits to the head in university level contact sports athletes is modulated by high levels of fitness. To this end, 72 students were recruited: 24 athletes practicing a varsity contact sport (A-CS), 24 athletes practicing a varsity non-contact sport (A-NCS), and 24 healthy non-athletes (NA). Participants underwent a magnetic resonance imaging session that included diffusion-weighted imaging. Between-groups, statistical analyses were performed with diffusion tensor imaging measures extracted by tractometry of sections of the corpus callosum and the corticospinal tract. Most significant effects were found in A-NCS who exhibited higher fractional anisotropy (FA) values than A-CS in almost all segments of the corpus callosum and in the corticospinal tract. The A-NCS also showed higher FA compared with NA in the anterior regions of the corpus callosum and the corticospinal tracts. No group difference was found between the A-CS and the NA groups. These data suggest that repeated subconcussive hits to the head lead to anisotropic changes in the WM that may counteract the beneficial effects associated with high levels of fitness.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/neu.2020.7170 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!