We measured the deuteron quadrupole coupling constants (DQCCs) for hydroxy-functionalized ionic liquids (ILs) with varying alkyl chain length over the temperature range between 60 and 200 K by means of solid-state NMR spectroscopy. For all temperatures, the H spectra show two DQCCs representing different types of hydrogen bonds. Higher values, ranging from 220 to 250 kHz, indicate weaker hydrogen bonds between cation and anion (c-a), and lower values varying from 165 to 210 kHz result from stronger hydrogen bonds between the OD groups of cations (c-c), in agreement with recent observations in infrared, neutron diffraction, and NMR studies. We observed different temperature dependencies for (c-a) and (c-c) hydrogen bonding. From the static pattern of the H spectra at the lowest temperatures, we derived the true DQCCs being up to 20 kHz larger than recently reported values measured at the glass transition temperature. We were able to freeze the librational motions of the hydrogen bonds in the ILs. The temperature dependence of the (c-a) and (c-c) cluster populations in the glassy state is opposite to that observed in the liquid state, partly anticipating the behavior of ILs tending to crystallize.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.0c01731DOI Listing

Publication Analysis

Top Keywords

hydrogen bonds
20
hydroxy-functionalized ionic
8
deuteron quadrupole
8
quadrupole coupling
8
coupling constants
8
types hydrogen
8
glass transition
8
c-a c-c
8
hydrogen
6
bonds
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!