The study aim was to determine whether strongly bioactive hydrophilic red cabbage anthocyanins possess the ability to cross the blood-cerebrospinal fluid barrier (blood-CSF barrier) and whether there is a selectivity of this barrier toward these compounds. To fulfill objectives, red cabbage preparation, containing nonacylated and acylated anthocyanins, was administered to 16 sheep with implanted cannulas into the brain third ventricle, and next, within 10 h, blood, urine, and the cerebrospinal fluid (CSF) were collected and analyzed with HPLC-MS/MS. Though, in blood plasma and urine after red cabbage intake, both, acylated and nonacylated anthocyanins and their metabolites occurred, but only nonacylated derivatives were present in the CSF, and their changes in the profile and concentration in the CSF resulted from the fluctuation of these pigments' concentration and profile in blood, their different abilities to permeate via the blood-CSF barrier, and their transformations in this barrier. Results indicate that the blood-CSF barrier is selective for red cabbage anthocyanins.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.0c03170DOI Listing

Publication Analysis

Top Keywords

red cabbage
20
cabbage anthocyanins
12
blood-csf barrier
12
blood-cerebrospinal fluid
8
fluid barrier
8
barrier selective
8
selective red
8
anthocyanins metabolites
8
barrier
7
red
5

Similar Publications

Phenolic compounds are known for their health-promoting effects on humans. Pak choi (Brassica rapa ssp. chinensis) and Swiss chard (Beta vulgaris subsp.

View Article and Find Full Text PDF

Anthocyanins (ANS) are an appealing substitute to synthetic colorants; but their practical applicability is limited due to low color stability. Copigmentation can improve both complex's color stability as well as intensity. In this study, we examined the interaction of red cabbage ANS with copigments i.

View Article and Find Full Text PDF

Background: Understanding the size and surface charge (ζ-potential) of particles in the mixed micellar fraction produced by in vitro digestion is crucial to understand their cellular absorption and transport. The inconsistent presentation of micellar size data, often limited to average particle diameter, makes comparison of studies difficult. The present study aimed to assess different size data representations (mean particle diameter, relative intensity- or volume-weighted size distribution) to better understand physiological mixed micelle characteristics and to provide recommendations for size reporting and sample handling.

View Article and Find Full Text PDF

Excessive use of chemical fertilizers and extensive farming can degrade soil properties so that leading to decline in crop yields. Combining plant growth-promoting rhizobacteria (PGPR) with biochar (BC) may be an alternative way to mitigate this situation. However, the proportion of PGPR and BC at which crop yield can be improved, as well as the improvement effect extent on different eco-geographic region and crops, remain unclear.

View Article and Find Full Text PDF

Enhancement of yield and functional quality of Brassica microgreens: Effects of fertilization and substrate.

Food Chem

December 2024

Laboratorio de Cromatografía para Agroalimentos, Instituto de Biología Agrícola de Mendoza, CONICET- Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Almte. Brown 500, Chacras de Coria, Mendoza, Argentina; Cátedra de Química Analítica e Instrumental, Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Almte. Brown 500, Chacras de Coria, Mendoza, Argentina. Electronic address:

Brassica microgreens are rich in bioactive compounds, whose concentrations are influenced by environmental and cultivation conditions. This study evaluates the impact of different substrates and fertigation treatments, including sulfur, on the yield, morphology, and phytochemical profile of radish, red cabbage, white mustard, and red mizuna microgreens. Phytochemicals analyzed included total phenolic compounds (TPC), ascorbic acid (AA), and glucosinolates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!