Hypoxia is a well-established feature of prostate cancer (PCa) and is associated with disease aggressiveness. The hypoxic microenvironment initiates multiple adaptive responses including epithelial-to-mesenchymal transition (EMT) and a remodeling of calcium homeostasis involved in cancer progression. In the present study, we identified a new hypoxia signaling pathway with a positive feedback loop between the EMT transcription factor Zeb1 and SK3, a Ca-activated K+ channel, which leads to amplifying store-operated Ca entry. Zeb1 and SK3 channel were strongly upregulated by hypoxia both in vitro and ex vivo in organotypic cultures of human PCa. Taking into account the sensitivity of the SK3 channel to the membrane lipid composition, we identified lipids such as Ohmline (an alkyl ether lipid and SK3 inhibitor), linoleic acid (LA) and eicosapentaenoic acid (EPA) (fatty acids associated with indolent PCa), which were able to completely abrogate the hypoxia-induced changes in Zeb1 expression. Ultimately, better understanding of this new hypoxia-induced EMT pathway may allow to develop adjuvant therapeutic strategies, in order to control PCa aggressiveness and improve treatment outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7369999PMC
http://dx.doi.org/10.3390/ijms21134786DOI Listing

Publication Analysis

Top Keywords

zeb1 sk3
12
sk3 channel
12
prostate cancer
8
sk3
5
hypoxia
4
hypoxia promotes
4
promotes prostate
4
cancer aggressiveness
4
aggressiveness upregulating
4
upregulating emt-activator
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!