Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The human retroviral-like aspartic protease 1 (ASPRV1) is a mammalian retroviral-like enzyme that catalyzes a critical proteolytic step during epidermal differentiation; therefore, it is also referred to as skin-specific aspartic protease (SASPase). Neutrophil granulocytes were also found recently to express ASPRV1 that is involved in the progression of acute chronic inflammation of the central nervous system, especially in autoimmune encephalomyelitis. Thus, investigation of ASPRV1 is important due to its therapeutic or diagnostic potential. We investigated the structural characteristics of ASPRV1 by homology modeling; analysis of the proposed structure was used for interpretation of in vitro specificity studies. For in-vitro characterization, activities of SASP28 and SASP14 enzyme forms were measured using synthetic oligopeptide substrates. We demonstrated that self-processing of SASP28 precursor causes autoactivation of the protease. The highest activity was measured for GST-SASP14 at neutral pH and at high ionic strength, and we proved that pepstatin A and acetyl-pepstatin can also inhibit the protease. In agreement with the structural characteristics, the relatively lower urea dissociation constant implied lower dimer stability of SASP14 compared to that of HIV-1 protease. The obtained structural and biochemical characteristics support better understanding of ASPRV1 function in the skin and central nervous system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7408472 | PMC |
http://dx.doi.org/10.3390/biom10071004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!