A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of Climate Change on Land Cover Change and Vegetation Dynamics in Xinjiang, China. | LitMetric

Effects of Climate Change on Land Cover Change and Vegetation Dynamics in Xinjiang, China.

Int J Environ Res Public Health

School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China.

Published: July 2020

Since the Silk-road Economic belt initiatives were proposed, Xinjiang has provided a vital strategic link between China and Central Asia and even Eurasia. However, owing to the weak and vulnerable ecosystem in this arid region, even a slight climate change would probably disrupt vegetation dynamics and land cover change. Thus, there is an urgent need to determine the Normalized Difference Vegetation Index (NDVI) and Land-use/Land-cover (LULC) responses to climate change. Here, the extreme-point symmetric mode decomposition (ESMD) method and linear regression method (LRM) were applied to recognize the variation trends of the NDVI, temperature, and precipitation between the growing season and other seasons. Combining the transfer matrix of LULC, the Pearson correlation analysis was utilized to reveal the response of NDVI to climate change and climate extremes. The results showed that: (1) Extreme temperature showed greater variation than extreme precipitation. Both the ESMD and the LRM exhibited an increased volatility trend for the NDVI, with the significant improvement regions mainly located in the margin of basins. (2) Since climate change had a warming trend, the permanent snow has been reduced by 20,436 km. The NDVI has a higher correlation to precipitation than temperature. Furthermore, the humid trend could provide more suitable conditions for vegetation growth, but the warm trend might prevent vegetation growth. Spatially, the response of the NDVI in North Xinjiang (NXC) was more sensitive to precipitation than that in South Xinjiang (SXC). Seasonally, the NDVI has a greater correlation to precipitation in spring and summer, but the opposite occurs in autumn. (3) The response of the NDVI to extreme precipitation was stronger than the response to extreme temperature. The reduction in diurnal temperature variation was beneficial to vegetation growth. Therefore, continuous concentrated precipitation and higher night-time-temperatures could enhance vegetation growth in Xinjiang. This study could enrich the understanding of the response of land cover change and vegetation dynamics to climate extremes and provide scientific support for eco-environment sustainable management in the arid regions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7370003PMC
http://dx.doi.org/10.3390/ijerph17134865DOI Listing

Publication Analysis

Top Keywords

climate change
20
vegetation growth
16
land cover
12
cover change
12
vegetation dynamics
12
response ndvi
12
change
8
vegetation
8
change vegetation
8
ndvi
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!