The aim of the study is to determine the energy consumption of the extrusion-cooking process of corn straw under various conditions (screw speed, moisture content), water absorption measurements and water solubility indices as well as biogas efficiency evaluation. The extrusion-cooking of corn straw was carried out using a single screw extruder with L/D = 16:1 at various rotational screw speeds (70, 90, and 110 rpm) and with various initial moisture content of raw material (25 and 40%). Prior to the process, the moisture content of the raw material was measured, and next, it was moistened to 25 and 40% of dry matter. For example, at 70 rpm extruder screw speed, the temperature range was 126-150 °C. Energy consumption of straw pretreatment through extrusion-cooking was assessed in order to evaluate the possibility of using the process in an agricultural biogas plant. Biogas and methane efficiency of substrates after extrusion was tested in a laboratory scale biogas plant and expressed as a volume of cumulative methane production for fresh matter, dry matter, and dry organic matter. Pretreated corn straw moistened to 25% and processed at 110 rpm during the extrusion-cooking processing produced the most advantageous effect for methane and biogas production (51.63%) efficiency as compared to corn straw without pretreatment (49.57%). Rotational speed of the extruder screw influenced biogas and methane production. With both dry matter and dry organic matter, the increase of rotational speed of the extruder screw improved the production of cumulated biogas and methane. Pretreatment of corn straw has a positive effect on the acquisition of cumulated methane (226.3 Nm Mg for fresh matter, 243.99 Nm Mg for dry matter, and 254.83 Nm Mg for dry organic matter). Preliminary analysis of infrared spectra revealed changes in the samples also at the molecular level, thus opening up the possibility of identifying marker bands that account for specific degradation changes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7372349 | PMC |
http://dx.doi.org/10.3390/ma13133003 | DOI Listing |
J Air Waste Manag Assoc
January 2025
Center for Applied Climate Sciences, University of Southern Queensland, Toowoomba, Australia.
Densification of biomass through pelletizing offers a promising approach to producing clean biofuels from renewable resources. This study, which investigates the impact of additive blends on wheat straw pellet making and upgrading the physiochemical properties, has revealed exciting possibilities. Five additives, including sawdust (SD), bentonite clay (BC), corn starch (S), crude glycerol (CG), and biochar (BioC), were chosen for this study.
View Article and Find Full Text PDFImeta
December 2024
Institute of Soil Science, Chinese Academy of Sciences Nanjing China.
Phosphorus, as a nonrenewable resource, plays a crucial role in crop development and productivity. However, the extent to which straw amendments contribute to the dynamics of soil alkaline phosphomonoesterase (ALP)-producing bacterial community and functionality over an extended period remains elusive. Here, we conducted a 7-year long-term field experiment consisting of a no-fertilizer control, a chemical fertilizer treatment, and three straw (straw, straw combined with manure, and straw biochar) treatments.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang, China. Electronic address:
Silver nanoparticles (AgNPs) exhibit broad-spectrum antibacterial activity and serve as effective antimicrobial agents against antibiotic-resistant bacteria. In this study, agricultural waste corn straw was used as the raw material to obtain cellulose nanocrystal (CNC) through enzymatic hydrolysis. The hydrolysate was employed as reducing agents to synthesize CNC-AgNPs.
View Article and Find Full Text PDFFront Microbiol
December 2024
College of Life Science, Jilin Agricultural University, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Education Ministry of China, Changchun, Jilin, China.
Background: The production of D-lactic acid (D-LA) from non-detoxified corn stover hydrolysate is hindered by substrate-mediated inhibition and low cell utilization times. In this study, we developed a novel temperature-sensitive hydrogel, F127-IEA, for efficient D-LA production using a cell-recycle batch fermentation process.
Results: F127-IEA exhibited a porous structure with an average pore size of approximately 1 μm, facilitating the formation of stable clusters within the gel matrix.
Bioresour Technol
December 2024
Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, Henan, China. Electronic address:
Nanobubbles (NBs) technology has been proven to promote methane production from anaerobic digestion (AD). In this study, the synergistic effects of (CH + CO)-nanobubble water ((CH + CO)-NBW) combined with varying particle sizes of corn straw on the AD were investigated. As findings, adding (CH + CO)-NBW effectively promoted the methane production from AD of corn straw with different particle sizes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!