The N-doped hybrid carbon materials containing amorphous carbon nanotubes (ACNTs) were obtained by free growth of a polymer at 200 °C. The improvement of electrical conductivity was achieved by a final carbonization at 600-800 °C under the flow of nitrogen. The microstructure of ACNT/N-doped hybrids was characterized using a transmission electron microscope and X-ray diffusion. Furthermore, their elemental composition was measured using energy-dispersive X-ray spectroscopy and an elemental analyzer. The experimental results indicated that the ACNTs had a diameter in the range of 40-60 nm and the N-doped carbon background contained nitrogen atoms in most bonded pyrrolic-N and quaternary-N groups. The results revealed that the microstructure of the as-grown nanotubes, prepared by the proposed method, is mainly amorphous. This technique introduces the advantages of low cost and process simplicity, which may redeem some drawbacks of the methods commonly used in ACNT synthesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7372370 | PMC |
http://dx.doi.org/10.3390/ma13132997 | DOI Listing |
Polymers (Basel)
January 2025
Faculty of Mechanical Engineering, Technical University of Liberec, 461 17 Liberec, Czech Republic.
The objective of the present work was to prepare hybrid epoxy composites with improved mechanical and thermal properties. The simultaneous use of two different modifiers in an epoxy resin was motivated by the expected occurrence of synergistic effects on the performance properties of the matrix. Such a hybrid composite can be used in more severe conditions and/or in broader application areas.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Advanced Manufacturing Institute, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia.
Multifunctional polymer composites containing micro/nano hybrid reinforcements have attracted intensive attention in the field of materials science and engineering. This paper develops a multi-phase analytical model for investigating the effective electrical conductivity of micro-silicon carbide (SiC) whisker/nano-carbon black (CB) polymer composites. First, CB nanoparticles are dispersed within the non-conducting epoxy to achieve a conductive CB-filled nanocomposite and its electrical conductivity is predicted.
View Article and Find Full Text PDFMolecules
January 2025
Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, China.
Carbon-based nanomaterials with excellent electrical and optical properties are highly sought after for a plethora of hybrid applications, ranging from advanced sustainable energy storage devices to opto-electronic components. In this contribution, we examine in detail the dependence of electrical conductivity and the ultrafast optical nonlinearity of graphene oxide (GO) films on their degrees of reduction, as well as the link between the two properties. The GO films were first synthesized through the vacuum filtration method and then reduced partially and controllably by way of femtosecond laser direct writing with varying power doses.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Departamento de Química Orgánica, Universidad de Zaragoza, 50009 Zaragoza, Spain.
Dye-sensitization is a promising strategy to improve the light absorption and photoactivity abilities of wide-bandgap semiconductors, like TiO. For effective water-splitting photoanodes with no sacrificial agents, the electrochemical potential of the dye must exceed the thermodynamic threshold needed for the oxygen evolution reaction. This study investigates two promising organic cyanoacrylic dyes, designed to meet that criterion by means of theoretical calculations.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
It is challenging to handle heavy-metal-rich plants that grow in contaminated soil. The role of heavy metals in biomass on the physicochemical structure and electrochemical properties of their derived carbon has not been considered in previous research. In this study, Cu-ion hybrid nanoporous carbon (CHNC) is prepared from Cu content-contaminated biomass through subcritical hydrocharization (HTC) coupling pyrolytic activation processes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!