This paper proposes a new sustainable and simple strategy for the micro-scale extraction of phenolic compounds from grapevine leaves with analytical purpose. The method is based on a microwave-assisted solid-liquid extraction approach (MA-SLE), using an aqueous solution of an ionic liquid (IL)-based surfactant as extraction phase. The method does not require organic solvents, nor any clean-up step, apart from filtration prior to the injection in the analytical system. Two IL-based surfactants were evaluated, and the method was optimized by using experimental designs, resulting in the use of small amounts of sample (100 mg) and extraction phase (2.25 mL), low concentrations of the selected 1-hexadecyl-3-butyl imidazolium bromide IL (0.1 mM), and 30 min of extraction time. The proposed methodology was applied for the determination of the polyphenolic pattern of six different varieties of leaves from the Canary Islands, using high-performance liquid chromatography and photodiode array detection for the quantification of the compounds. The proposed MA-SLE approach was greener, simpler, and more effective than other methods, while the results from the analysis of the leaves samples demonstrate that these by-products can be exploited as a source of natural compounds for many applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7412462 | PMC |
http://dx.doi.org/10.3390/molecules25133072 | DOI Listing |
Small
January 2025
Department of Materials Science and Engineering, Hongik University, Seoul, 04066, Republic of Korea.
Microstructure optimization and high-performance material development are crucial for improving the electrochemical performance of all-solid-state batteries (ASSBs). Researchers frequently record numerous micro-scale or nano-scale electron micrographs for unbiased post-mortem analysis, performance evaluation, and improvement of ASSBs. However, these micrographs are often underutilized and typically analyzed qualitatively without ensuring an accurate representation of the experimental objectives.
View Article and Find Full Text PDFWaste Manag
December 2024
College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China.
To alleviate the energy crisis and control environmental pollution raised by spent lithium-ion batteries (LIBs), the development of efficient and economic methods for their recycling is crucial for sustainable development of new energy industry. Herein, a combined pyro - hydrometallurgical process was adopted for recovery of valuable metal elements for spent LiNiCoMnO (NCM523). Different from conventional pyrometallurgical methods with high temperature and energy consumption, the NHHSO roasting strategy works at 400 °C and achieves remarkable leaching efficiencies of Li, Co, Mn, and Ni achieved 97.
View Article and Find Full Text PDFHeliyon
October 2024
Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1205, Bangladesh.
Micromachines (Basel)
November 2024
Department of Medical Research, Tungs' Taichung MetroHarbor Hospital, Taichung City 43503, Taiwan.
We explored the use of biomimetic structures, including those that mimic leaf structures, to enhance the angular color uniformity of flat phosphor-converted light-emitting diodes (pcLEDs). The distinct microstructures found on natural leaf surfaces, such as micro-scale bumps, ridges, and hierarchical patterns, have inspired the design of artificial microstructures that can improve light extraction, scattering, and overall optical performance in LED applications. The effects of these leaf surface microstructures on the phosphor layer of flat pcLEDs were evaluated.
View Article and Find Full Text PDFResearch (Wash D C)
November 2024
Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, P. R. China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!