AI Article Synopsis

  • This study uses particle-based simulations to explore how stress-activated constraints affect discontinuous shear thickening (DST) and shear jamming (SJ) in suspensions, particularly focusing on resistance due to rolling friction.
  • It finds that rolling friction lowers the volume fraction needed for DST and SJ, aligning with observed behaviors in real-world suspensions that have adhesive surfaces and rough particle shapes.
  • Overall, the research highlights that rolling friction significantly alters the frictional force network and contributes to increased viscosity in these materials, making it essential for understanding shear-thickening behavior.

Article Abstract

Particle-based simulations of discontinuous shear thickening (DST) and shear jamming (SJ) suspensions are used to study the role of stress-activated constraints, with an emphasis on resistance to gearlike rolling. Rolling friction decreases the volume fraction required for DST and SJ, in quantitative agreement with real-life suspensions with adhesive surface chemistries and "rough" particle shapes. It sets a distinct structure of the frictional force network compared to only sliding friction, and from a dynamical perspective leads to an increase in the velocity correlation length, in part responsible for the increased viscosity. The physics of rolling friction is thus a key element in achieving a comprehensive understanding of strongly shear-thickening materials.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.124.248005DOI Listing

Publication Analysis

Top Keywords

shear thickening
8
rolling friction
8
thickening jamming
4
jamming dense
4
dense suspensions
4
suspensions "roll"
4
friction
4
"roll" friction
4
friction particle-based
4
particle-based simulations
4

Similar Publications

A simple model of the rheological curve of HPAM solutions at different temperatures.

Sci Rep

December 2024

Laboratorio de Fluidodinámica, Facultad de Ingeniería, Universidad de Buenos Aires/CONICET, Paseo Colón 850 CABA, Buenos Aires, Argentina.

The oil and gas industry faces two significant challenges, including rising global temperatures and depletion of reserves. Enhanced recovery techniques such as polymer flooding have positioned themselves as an alternative that attracts international attention thanks to increased recovery factors with low emissions. However, existing physical models need further refinement to improve predictive accuracy and prevent design failures in polymer flooding projects.

View Article and Find Full Text PDF

Preparation and Performance Evaluation of CO Foam Gel Fracturing Fluid.

Gels

December 2024

Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao 266580, China.

The utilization of CO foam gel fracturing fluid offers several significant advantages, including minimal reservoir damage, reduced water consumption during application, enhanced cleaning efficiency, and additional beneficial properties. However, several current CO foam gel fracturing fluid systems face challenges, such as complex preparation processes and insufficient viscosity, which limit their proppant transport capacity. To address these issues, this work develops a novel CO foam gel fracturing fluid system characterized by simple preparation and robust foam stability.

View Article and Find Full Text PDF

A green chemical shear-thickening polishing (GC-STP) method was studied to improve the surface precision and processing efficiency of monocrystalline silicon. A novel green shear-thickening polishing slurry composed of silica nanoparticles, alumina abrasive, sorbitol, plant ash, polyethylene glycol, and deionized water was formulated. The monocrystalline silicon was roughly ground using a diamond polishing slurry and then the GC-STP process.

View Article and Find Full Text PDF

Hydrophobic association polymers containing various functional groups have a great deal of application potential as a self-thickening agent in carbonate acidification, while the improvement of their viscosification ability under high temperature conditions remains a significant challenge. A kind of betaine-type hydrophobic association polymer (PASD) intended for use as an acid thickener was synthesized through aqueous solution polymerization with sulfobetaine and a soluble hydrophobic monomer. The structure of PASD was characterized by FT-IR and H NMR.

View Article and Find Full Text PDF

Super absorbent microsphere used for slow-release thickening.

J Colloid Interface Sci

December 2024

College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China; National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology, Donghua University, Shanghai 201620, China. Electronic address:

Traditional linear polymer is commonly used for polymer flooding in tertiary oil recovery. However, it faces several problems, such as early injection allocation before use and viscosity reduction caused by high-speed shear. In this paper, a novel method of polymer flooding was proposed by using a super absorbent microsphere emulsion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!