AI Article Synopsis

  • The bilayer quantum Hall state at total filling factor one has been extensively researched, revealing phenomena like Josephson-like tunneling and zero Hall resistance.
  • The focus has shifted to understanding the edge physics, specifically through quasiparticle tunneling observed at a quantum point contact.
  • These tunneling results show a zero bias peak that aligns with theoretical expectations and suggests the presence of fractional charge, indicating potential interactions between the chiral edge and the bulk.

Article Abstract

The bulk properties of the bilayer quantum Hall state at total filling factor one have been intensively studied in experiment. Correlation induced phenomena such as Josephson-like tunneling and zero Hall resistance have been reported. In contrast, the edge of this bilayer state remains largely unexplored. Here, we address this edge physics by realizing quasiparticle tunneling across a quantum point contact. The tunneling manifests itself as a zero bias peak that grows with decreasing temperature. Its shape agrees quantitatively with the formula for weak quasiparticle tunneling frequently deployed in the fractional quantum Hall regime in single layer systems, consistent with theory. Interestingly, we extract a fractional charge of only a few percent of the free electron charge, which may be a signature of the theoretically predicted leakage between the chiral edge and the bulk mediated by gapless excitations.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.124.246801DOI Listing

Publication Analysis

Top Keywords

quasiparticle tunneling
12
quantum hall
8
tunneling exciton
4
exciton condensate
4
condensate bulk
4
bulk properties
4
properties bilayer
4
bilayer quantum
4
hall state
4
state total
4

Similar Publications

In metallic transition metal dichalcogenides (TMDs), which remain superconducting down to single-layer thickness, the critical temperature T decreases for Nb-based, and increases for Ta-based materials. This contradicting trend is puzzling, impeding the development of a unified theory. Here we study the thickness-evolution of superconducting tunneling spectra in TaSheterostructures.

View Article and Find Full Text PDF

Topological superconductivity is a promising concept for generating fault-tolerant qubits. Early experimental studies looked at hybrid systems and doped intrinsic topological or superconducting materials at very low temperatures. However, higher critical temperatures are indispensable for technological exploitation.

View Article and Find Full Text PDF

The cascade of correlated topological quantum states in the newly discovered vanadium-based kagome superconductors, AVSb (A = K, Rb, and Cs), with a Z topological band structure has sparked immense interest. Here, we report the discovery of superconductivity and electronic nematic order in high-quality single-crystals of a new titanium-based kagome metal, CsTiBi, that preserves the translation symmetry, in stark contrast to the charge density wave superconductor AVSb. Transport and magnetic susceptibility measurements show superconductivity with an onset superconducting transition temperature T of approximately 4.

View Article and Find Full Text PDF

We report observations of discrete charge states of a coherent two-level system (TLS) that is strongly coupled to an offset-charge-sensitive superconducting transmon qubit. We measure an offset charge of 0.072e associated with the two TLS eigenstates, which have a transition frequency of 2.

View Article and Find Full Text PDF

Topological signatures of triply degenerate fermions in Heusler alloys: anstudy.

J Phys Condens Matter

October 2024

Department of Physics, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India.

Triply degenerate nodal point (TP) fermions, lacking elementary particle counterparts, have been theoretically anticipated as quasiparticle excitations near specific band crossing points constrained by distinct space-group symmetries instead of Lorentz invariance. Here, based oncalculations and symmetry analysis, we demonstrate the presence of TP fermions in Heusler alloys. Furthermore, we predict that these Heusler alloys are dynamically stable, exhibiting TP fermions along four distinctaxes in the F-43m space group.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!