Continuous-wave photoinjectors operating at high accelerating gradients promise to revolutionize many areas of science and applications. They can establish the basis for a new generation of monochromatic x-ray free electron lasers, high-brightness hadron beams, or a new generation of microchip production. In this Letter we report on the record-performing superconducting rf electron gun with CsK_{2}Sb photocathode. The gun is generating high charge electron bunches (up to 10 nC/bunch) and low transverse emittances, while operating for months with a single photocathode. This achievement opens a new era in generating high-power beams with a very high average brightness.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.124.244801 | DOI Listing |
ArXiv
January 2025
Lumitron Technologies, Inc., Irvine, CA, United States.
The design and optimization of laser-Compton x-ray systems based on compact distributed charge accelerator structures can enable micron-scale imaging of disease and the concomitant production of beams of Very High Energy Electrons (VHEEs) capable of producing FLASH-relevant dose rates. The physics of laser-Compton x-ray scattering ensures that the scattered x-rays follow exactly the trajectory of the incident electrons, thus providing a route to image-guided, VHEE FLASH radiotherapy. The keys to a compact architecture capable of producing both laser-Compton x-rays and VHEEs are the use of X-band RF accelerator structures which have been demonstrated to operate with over 100 MeV/m acceleration gradients.
View Article and Find Full Text PDFWe report on a low-threshold efficient yellow Dy-fiber laser with good beam quality featuring high-brightness pumping. It employs a single-clad 0.2 mol% Dy:ZBLAN fiber pumped by two 450-nm blue GaN laser diodes.
View Article and Find Full Text PDFIn order to enhance the performance of a continuous-wave photocathode electron gun at Peking University, and to achieve electron beams with higher current and brightness, a multifunctional drive laser system named PULSE (Peking University drive Laser System for high-brightness Electron source) has been developed. This innovative system is capable of delivering an average output power of 120 W infrared laser pulse at 81.25 MHz, as well as approximately 13.
View Article and Find Full Text PDFYb-doped sesquioxides represent one of the most excellent laser crystals applying for high-power ultrafast lasers owing to their very high thermal conductivities and broadband emission spectra. Pumped by a high-brightness Yb-fiber laser at 976 nm, the Yb:LuO laser delivers a maximum output power that amounts to 3.55 W in the continuous-wave regime with an optical efficiency of 75%.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!