Enhanced Coulomb interactions in monolayer transition metal dichalcogenides cause tightly bound electron-hole pairs (excitons) that dominate their linear and nonlinear optical response. The latter includes bleaching, energy renormalizations, and higher-order Coulomb correlation effects like biexcitons and excitation-induced dephasing. While the first three are extensively studied, no theoretical footing for excitation-induced dephasing in exciton-dominated semiconductors is available so far. In this Letter, we present microscopic calculations based on excitonic Heisenberg equations of motion and identify the coupling of optically pumped excitons to exciton-exciton scattering continua as the leading mechanism responsible for an optical-power-dependent linewidth broadening (excitation-induced dephasing) and sideband formation. Performing time-, momentum-, and energy-resolved simulations, we quantitatively evaluate the exciton-induced dephasing for the most common monolayer transition metal dichalcogenides and find an excellent agreement with recent experiments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.124.257402 | DOI Listing |
Nanophotonics
February 2024
Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warszawa, Poland.
We present femtosecond pump-probe measurements of neutral and charged exciton optical response in monolayer MoSe to resonant photoexcitation of a given exciton state in the presence of 2D electron gas. We show that creation of charged exciton (X) population in a given K, K valley requires the capture of available free carriers in the opposite valley and reduces the interaction of neutral exciton (X) with the electron Fermi sea. We also observe spectral broadening of the X transition line with the increasing X population caused by efficient scattering and excitation induced dephasing.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
November 2023
School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30332, United States.
We present a study on the many-body exciton interactions in a Ruddlesden-Popper tin halide, namely, (PEA)SnI (PEA = phenylethylammonium), using coherent two-dimensional electronic spectroscopy. The optical dephasing times of the third-order polarization observed in these systems are determined by exciton many-body interactions and lattice fluctuations. We investigate the excitation-induced dephasing (EID) and observe a significant reduction of the dephasing time with increasing excitation density as compared to its lead counterpart (PEA)PbI, which we have previously reported in a separate publication [, 153, 164706].
View Article and Find Full Text PDFAnnu Rev Phys Chem
April 2023
Department of Chemistry, University of Houston, Houston, Texas, USA; email:
We review our recent quantum stochastic model for spectroscopic lineshapes in the presence of a coevolving and nonstationary background population of excitations. Starting from a field theory description for interacting bosonic excitons, we derive a reduced model whereby optical excitons are coupled to an incoherent background via scattering as mediated by their screened Coulomb coupling. The Heisenberg equations of motion for the optical excitons are then driven by an auxiliary stochastic population variable, which we take to be the solution of an Ornstein-Uhlenbeck process.
View Article and Find Full Text PDFLight Sci Appl
April 2022
College of Advanced Interdisciplinary Studies, National University of Defense Technology, 410073, Changsha, China.
Searching for ideal materials with strong effective optical nonlinear responses is a long-term task enabling remarkable breakthroughs in contemporary quantum and nonlinear optics. Polaritons, hybridized light-matter quasiparticles, are an appealing candidate to realize such nonlinearities. Here, we explore a class of peculiar polaritons, named plasmon-exciton polaritons (plexcitons), in a hybrid system composed of silver nanodisk arrays and monolayer tungsten-disulfide (WS), which shows giant room-temperature nonlinearity due to their deep-subwavelength localized nature.
View Article and Find Full Text PDFACS Nano
April 2021
Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States.
Perovskite nanoplatelets possess extremely narrow absorption and emission line widths, which are crucial characteristics for many optical applications. However, their underlying intrinsic and extrinsic line-broadening mechanisms are poorly understood. Here, we apply multidimensional coherent spectroscopy to determine the homogeneous line broadening of colloidal perovskite nanoplatelet ensembles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!