We perform fully kinetic simulations of flows known to produce dynamo in magnetohydrodynamics (MHD), considering scenarios with low Reynolds number and high magnetic Prandtl number, relevant for galaxy cluster scale fluctuation dynamos. We find that Landau damping on the electrons leads to a rapid decay of magnetic perturbations, impeding the dynamo. This collisionless damping process operates on spatial scales where electrons are nonmagnetized, reducing the range of scales where the magnetic field grows in high magnetic Prandtl number fluctuation dynamos. When electrons are not magnetized down to the resistive scale, the magnetic energy spectrum is expected to be limited by the scale corresponding to magnetic Landau damping or, if smaller, the electron gyroradius scale, instead of the resistive scale. In simulations we thus observe decaying magnetic fields where resistive MHD would predict a dynamo.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.124.255102DOI Listing

Publication Analysis

Top Keywords

landau damping
12
magnetic
8
magnetic fields
8
high magnetic
8
magnetic prandtl
8
prandtl number
8
fluctuation dynamos
8
resistive scale
8
scale
5
dynamo
4

Similar Publications

Polarizability, plasmons and damping in pseudospin-1 gapped materials with a flat band.

J Phys Condens Matter

December 2024

Space Vehicles Directorate, US Air Force Research Laboratory, Kirtland Air Force Base, Albuquerque, NM 87117, United States of America.

The subject of our present investigation is the collective electronic properties of various types of pseudospin-1 Dirac-cone materials with a flat band and finite bandgaps in their low-energy spectra. Specifically, we have calculated the dynamical polarization, plasmon dispersions, as well as their decay rates due to Landau damping and presented the closed-form analytical expressions for the wave function overlaps for both the gapped dice lattice and the Lieb lattice. The gapped dice lattice is a special case of the more general-T3model such that its band structure is symmetric and the flat band remains dispersionless.

View Article and Find Full Text PDF

The relaxation of a weakly collisional plasma, which is of fundamental interest to laboratory astrophysical plasmas, can be described by the self-consistent Boltzmann-Poisson equations with the Lenard-Bernstein collision operator. We perform a perturbative (linear and second-order) analysis of the Boltzmann-Poisson equations and obtain exact analytic solutions which resolve some longstanding controversies regarding the impact of weak collisions on the continuous spectra, the discrete Landau eigenmodes, and the decay of plasma echoes. We retain both damping and diffusion terms in the collision operator throughout our treatment.

View Article and Find Full Text PDF

We introduce Astrophysical Hybrid-Kinetic simulations with the flash code ([Formula: see text]) - a new Hybrid particle-in-cell (PIC) code developed within the framework of the multiphysics code flash. The new code uses a second-order accurate Boris integrator and a predictor-predictor-corrector algorithm for advancing the Hybrid-kinetic equations, using the constraint transport method to ensure that magnetic fields are divergence-free. The code supports various interpolation schemes between the particles and grid cells, with post-interpolation smoothing to reduce finite particle noise.

View Article and Find Full Text PDF

The theory of gauge transformations in linearized gravitation is investigated. After a brief discussion of the fundamentals of the kinetic theory in curved spacetime, the Einstein-Vlasov-Maxwell (EVM) system of equations in terms of gauge-invariant quantities is established without neglecting the equations of motion associated with the dynamics of the nonradiative components of the metric tensor. The established theory is applied to a noncollisional electron-positron plasma, leading to a dispersion relation for gravitational waves in this model system.

View Article and Find Full Text PDF

The skyrmion crystal (SkX) and helix (HL) phases, present in typical chiral magnets, can each be considered as forms of density waves but with distinct topologies. The SkX exhibits gyrodynamics analogous to electrons under a magnetic field, while the HL state resembles topological trivial spin density waves. However, unlike the charge density waves, the theoretical analysis of the sliding motion of SkX and HL remains unclear, especially regarding the similarities and differences in sliding dynamics between these two spin density waves.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!