Photosynthetically active radiation (PAR) affects transpirational water loss, yet we do not know through which mechanisms root water uptake is adjusted in parallel. Here, we exposed hydroponically grown barley plants to three levels of PAR [Normal (control), Low, High] and focused on the role which aquaporins (AQPs), apoplastic barriers (Casparian bands, suberin lamellae) and root morphology play in the adjustment of root hydraulic conductivity (Lp). Plants were analyzed when they were 14-18 days (d) old. Root and cell Lp, which involves AQP activity, was determined through exudation and cell pressure probe measurements, respectively. Gene expression of AQPs was analyzed through qPCR. The formation of apoplastic barriers was studied through staining of cross-sections. The rate of transpirational water loss per plant and unit leaf area increased in response to high-PAR and decreased in response to low-PAR treatments, both during day and night. Hydraulic conductivity in roots decreased significantly at organ and cell level in response to Low-PAR, and increased (organ) or did not change (cell level) in response to High-PAR. The formation of apoplastic barriers was little affected by PAR. Gene expression of AQPs tended to be highest in the Low-PAR treatment. Lateral roots, showing few apoplastic barriers, contributed the least in Low- and the most to root surface area in High-PAR plants. It is concluded that barley plants which experience changes in shoot transpirational water loss in response to PAR adjust root water uptake through changes in root Lp, and that these changes are mediated through altered AQP activity and root morphology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ppl.13164 | DOI Listing |
Plant Cell Physiol
January 2025
Research Center of Genetic Resources, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan.
Soil salinization and ground water depletion are increasingly constraining crop production. Identifying useful mechanisms of salt tolerance is an important step towards development of salt-tolerant crops. Of particular interest are mechanisms that are present in wild crop relatives, as they may have greater stress tolerance than crop species.
View Article and Find Full Text PDFPlant Commun
December 2024
National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China. Electronic address:
Transition metals are a type of metal with high chemical activity and play critical roles in plant growth and development, reproduction and environmental adaptation, as well as for human health. However, the acquisition, transportation and storage of these metals always pose specific challenges due to their nature of high reactivity and poor solubility. In addition, distinct yet interconnected apoplastic and symplastic diffusion barriers impede their movement throughout the plants.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan, China.
Mol Biol Rep
December 2024
Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India.
From soil to plant, the water and ions, enter the root system through the symplast and apoplast pathways. The latter gains significance under salt stress and becomes a major port of entry of the dissolved salts particularly the sodium ions into the root vasculature. The casparian strip (CS), a lignified barrier circumambulating the root endodermal cells' radial and transverse walls regulates the movement of water and solutes in and out of the stele.
View Article and Find Full Text PDFPlants (Basel)
November 2024
College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China.
The apoplastic barriers, composed of Casparian strip (CS) and suberin lamellae (SL), are integral to the regulation of water and plant nutrient uptake in plants, as well as their resilience to abiotic stresses. This study systematically examines the research developments and emerging trends in this field from 2003 to 2023, utilizing bibliometric tools such as Web of Science, CiteSpace, and VOSviewer to analyze a dataset of 642 publications. This paper reviews the cooperation of different countries, institutions, and scholars in apoplastic barriers research based on cooperative network analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!