Background: Prolyl hydroxylase inhibitors (PHI) promote stabilization of hypoxia-inducible factor-1 alpha and affect signaling cascades of inflammation and cell death. Their beneficial use in experimental models of ulcerative colitis and lung allograft rejection led us to test the effect of the PHI dimethyl oxalyl glycine (DMOG) in the pathophysiology of graft versus host disease (GVHD).
Methods: Acute GVHD was induced in lethally irradiated BALB/c mice. DMOG was administered intraperitoneally on alternate days for the first 2-weeks posttransplant, and then twice a week till day +50, while controls received vehicle only. Animals were monitored for clinical GVHD and analyzed at day +7 and at day +50.
Results: DMOG treatment of allogeneic recipients improved survival by day +50, which was associated with decreased early gut injury and serum tumor necrosis factor-α compared with allogeneic controls. DMOG treatment of allogeneic recipients resulted in increased hypoxia-inducible factor-1 alpha expression and reduced apoptosis in the terminal ileum via Fas-associated protein with death domain protein repression along with decreased T-cell infiltration. Reduced pathology in colon after DMOG treatment associates with intestinal epithelium integrity and reduced damage caused by diminished recruitment of neutrophils.
Conclusions: Taken together, we show protective effects of DMOG on early gut GVHD and improved survival in a model of allogeneic hematopoietic cell transplantation, providing the rationale for further evaluation of PHIs, in the prevention and treatment of acute GVHD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8139022 | PMC |
http://dx.doi.org/10.1097/TP.0000000000003383 | DOI Listing |
Prolyl Hydroxylase Domain protein 2 (PHD2) targets Hypoxia Inducible Factor alpha subunits (HIFα) for oxygen-dependent proline hydroxylation that leads to subsequent ubiquitination and degradation of HIFα. In addition to HIF proteins, growing evidence suggested that PHD2 may exert its multifaceted function through hydroxylase-dependent or independent activities. Given the critical role of PHD2 in diverse biological processes, it is important to comprehensively identify potential PHD2 interacting proteins.
View Article and Find Full Text PDFAm J Pathol
November 2024
Department of General, Visceral, and Transplantation Surgery, Heidelberg University, Heidelberg, Germany; Department of General, Visceral, Thoracic, and Transplantation Surgery, University of Giessen, Giessen, Germany. Electronic address:
Int J Biol Macromol
December 2024
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China. Electronic address:
Angiogenesis-osteogenesis coupling plays important roles in bone regeneration; therefore, biomaterials capable of stimulating both osteogenesis and angiogenesis show significant influence in bone repair. Herein, chitosan (CS) microcarriers loaded with functional drug dimethyloxalylglycine (DMOG) were prepared using the emulsion phase separation and impregnation method for stimulating osteogenesis and angiogenesis. FTIR and zeta potential analyses confirmed successful DMOG loading into CS microcarriers, primarily through physical adsorption, particularly hydrogen-bond interaction.
View Article and Find Full Text PDFFASEB J
October 2024
Department of Pathology, Yale University, New Haven, Connecticut, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!