A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Yolk Sac of Zebrafish Embryos as Backpack for Chemicals? | LitMetric

The zebrafish embryo () has developed into one of the most important nonsentient animal models for the hazard assessments of chemicals, but the processes governing its toxicokinetics (TK) are poorly understood. This study compares the uptake of seven test compounds into the embryonic body and the yolk sac of the zebrafish embryo using TK experiments, a dialysis approach, thermodynamic calculations, and kinetic modeling. Experimental data show that between 95% (4-iodophenol) and 67% (carbamazepine) of the total internal amount in 26 h post fertilization (hpf) embryos and between 80 and 49% in 74 hpf embryos were found in the yolk. Thus, internal concentrations determined for the whole embryo overestimate the internal concentration in the embryonic body: for the compounds of this study, up to a factor of 5. Partition coefficients for the embryonic body and a one-compartment model with diffusive exchange were calculated for the neutral test compounds and agreed reasonably with the experimental data. For prevalently ionic test compounds at exposure pH (bromoxynil, paroxetine), however, the extent and the speed of uptake were low and could not be modeled adequately. A better understanding of the TK of ionizable test compounds is essential to allow assessment of the validity of this organismic test system for ionic test compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.0c02068DOI Listing

Publication Analysis

Top Keywords

test compounds
20
embryonic body
12
yolk sac
8
sac zebrafish
8
zebrafish embryo
8
experimental data
8
hpf embryos
8
ionic test
8
test
6
compounds
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!