Single-cell proteomics can provide critical biological insight into the cellular heterogeneity that is masked by bulk-scale analysis. We have developed a nanoPOTS (nanodroplet processing in one pot for trace samples) platform and demonstrated its broad applicability for single-cell proteomics. However, because of nanoliter-scale sample volumes, the nanoPOTS platform is not compatible with automated LC-MS systems, which significantly limits sample throughput and robustness. To address this challenge, we have developed a nanoPOTS autosampler allowing fully automated sample injection from nanowells to LC-MS systems. We also developed a sample drying, extraction, and loading workflow to enable reproducible and reliable sample injection. The sequential analysis of 20 samples containing 10 ng tryptic peptides demonstrated high reproducibility with correlation coefficients of >0.995 between any two samples. The nanoPOTS autosampler can provide analysis throughput of 9.6, 16, and 24 single cells per day using 120, 60, and 30 min LC gradients, respectively. As a demonstration for single-cell proteomics, the autosampler was first applied to profiling protein expression in single MCF10A cells using a label-free approach. At a throughput of 24 single cells per day, an average of 256 proteins was identified from each cell and the number was increased to 731 when the Match Between Runs algorithm of MaxQuant was used. Using a multiplexed isobaric labeling approach (TMT-11plex), ∼77 single cells could be analyzed per day. We analyzed 152 cells from three acute myeloid leukemia cell lines, resulting in a total of 2558 identified proteins with 1465 proteins quantifiable (70% valid values) across the 152 cells. These data showed quantitative single-cell proteomics can cluster cells to distinct groups and reveal functionally distinct differences.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7793572 | PMC |
http://dx.doi.org/10.1021/acs.analchem.0c01551 | DOI Listing |
Alzheimers Dement
December 2024
Institute for Memory Impairments and Neurological Disorders (MIND), Irvine, CA, USA.
Background: Late-onset Alzheimer's disease (LOAD) represents the majority of human AD cases, yet the availability of animal models that accurately reflect LOAD progression and pathology is limited. Traditional transgenic mouse models including 3xTg-AD and 5xFAD rely on supraphysiological overexpression of familial AD risk genes, failing to adequately replicate the disease progression observed in LOAD. Here, we present the first characterization of MODEL-AD1 (MAD1), a platform mouse developed by the Model Organism Development and Evaluation for Late-onset Alzheimer's Disease (MODEL-AD) Consortium.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Columbia University, New York, NY, USA.
Background: The connection between inflammasomes and Alzheimer's disease (AD) has garnered significant interest, with emerging evidence suggesting genetic associations and functional implications. Notably, studies have reported the upregulation of inflammasome components like NLRP1, NLRP3, and Caspase-1 in AD patients. Moreover, genetic polymorphisms in inflammasome-related genes are linked to increased AD risk.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Columbia University Irving Medical Center, New York, NY, USA.
Background: African Americans (AA) are disproportionally burdened by Alzheimer's disease (AD), but there is a scarcity of research focusing on understanding the neuroimmune component of AD pathogenesis in this population. It is generally accepted that microglia would be an ideal therapeutic target for AD and that genetic, lifestyle, societal and environmental factors and stressors have the potential to shape microglia phenotypes and their contribution to neurodegenerative processes. The overarching goal of the current study is to establish the population structure of microglia in older AAs and to investigate the relationship of the different microglia subsets with histopathological hallmarks of brain aging and AD in AAs.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of California, Irvine, Irvine, CA, USA.
Background: A case study on a PSEN1 (E280A) carrier with APOECh (R136S) mutation revealed changes in APOE protein function led to a protective effect on AD outcomes. Notably, there is an intriguing disparity between the two hallmark pathologies: a reduction in tauopathy but no change in plaque burden. Given that the APOE protein is predominantly produced by astrocytes and activated microglia, and the APOE gene is among the disease-associated microglia (DAM) genes, it is conceivable that the variance in pathological outcomes may be rooted in the glial response.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Institute for Memory Impairments and Neurological Disorders (MIND), Irvine, CA, USA.
Background: Several variants have been identified that protect against the development of Alzheimer's disease (AD). Understanding how these alleles convey protection inform us not only about the disease pathogenesis, but also guide therapeutic strategies. The UCI MODEL-AD consortium has developed several protective alleles including a putative gain of function variant of ABCA7, and the APOE Christchurch variant.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!