The Nobel Prize in Chemistry 2019 recognized the importance of Li-ion batteries and the revolution they allowed to happen during the past three decades. They are part of a broader class of electrochemical energy storage devices, which are employed where electrical energy is needed on demand and so, the electrochemical energy is converted into electrical energy as required by the application. This opens a variety of possibilities on the utilization of energy storage devices, beyond the well-known mobile applications, assisting on the decarbonization of energy production and distribution. In this series of reviews in two parts, two main types of energy storage devices will be explored: electrochemical capacitors (part I) and rechargeable batteries (part II). More specifically, we will discuss about the materials used in each type of device, their main role in the energy storage process, their advantages and drawbacks and, especially, strategies to improve their performance. In the present part, electrochemical capacitors will be addressed. Their fundamental difference to batteries is explained considering the process at the electrode/electrolyte surface and the impact in performance. Materials used in electrochemical capacitors, including double layer capacitors and pseudocapacitive materials will be reviewed, highlighting the importance of electrolytes. As an important part of these strategies, synthetic routes for the production of nanoparticles will also be approached (part I).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1590/0001-3765202020200796 | DOI Listing |
Small
January 2025
Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India.
To rival commercial organic electrolytes, it is important to focus on safe, cheap aqueous electrolytes with lower salt concentration (≈5.0 m) and a wider electrochemical stable potential window (ESPW). This study reports the facile synthesis of porphyrin-based covalent organic polymers (PTZ-COP, CBZ-COP, and TPA-COP) through a one-pot aromatic electrophilic polycondensation reaction between pyrrole and monomeric aldehydes (PTZ-CHO, CBZ-CHO and TPA-CHO).
View Article and Find Full Text PDFACS Cent Sci
December 2024
Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
Electron transporting (n-type) polymeric mixed conductors are an exciting class of materials for devices with aqueous electrolyte interfaces, such as bioelectronic sensors, actuators, and soft charge storage systems. However, their charge transport performance falls short of their p-type counterparts, primarily due to electrochemical side reactions such as the oxygen reduction reaction (ORR). To mitigate ORR, a common strategy in n-type organic semiconductor design focuses on lowering the lowest unoccupied molecular orbital (LUMO) level.
View Article and Find Full Text PDFSmall
December 2024
School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, 85281, USA.
Electrochemical capacitors (ECs) offer superior specific capacitance for energy storage compared to traditional electrolytic capacitors but face limitations in alternating current (AC) filtering due to the need for balancing fast response and high capacitance. This study addresses these challenges by developing a freestanding nanostructured carbon electrode, derived from the rapid carbonization of bacterial cellulose (BC) embedded with zeolitic imidazolate framework 8 (ZIF-8) and in situ formed carbon nanotubes (CNTs). The electrode exhibits an exceptionally low area resistance of 9.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
This study presents the synthesis of a transparent, flexible gel polymer electrolyte (GPE) based on the protic ionic liquid BMImHSO and on polyvinyl alcohol (PVA) through solution casting and electrochemical evaluation in a 2.5 V symmetrical C/C electrical double-layer solid-state capacitor (EDLC). The freestanding GPE film exhibits high thermal stability (>300 °C), wide electrochemical windows (>2.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Condensed Matter Department, National Institute for Research and Development in Electrochemistry and Condensed Matter, 300224 Timisoara, Romania.
Due to population growth and global technological development, energy consumption has increased exponentially. The global energy crisis opens up many hotly debated topics regarding energy generation and consumption. Not only is energy production in short supply due to limited energy resources but efficient and sustainable storage has become a very important goal.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!