The formation of the Cu-Pt nanocontacts has been investigated by means of classical molecular dynamics simulations. The simulations of the mechanically controlled break junction experiment have been performed in wide ranges of temperatures (0-300 K) and at relative Pt concentrations (0-20%). The structure of the breaking area has been studied 2 ns before the final breaking of the nanocontacts. The length of the breaking area increases with the increase of the temperature and decreases with the increase of the relative Pt concentration. The structure of the breaking area has been investigated by means of the radial distribution function method. The breaking area usually has one of the following structures: (i) a bulk-like structure, (ii) a structure consisting of centered icosahedrons rotated 90°, or (iii) an icosahedral structure composed of pentagonal rings. The structure of the breaking area is almost independent of the temperature and the stretching direction due to the strong Cu-Pt interaction.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cp02903cDOI Listing

Publication Analysis

Top Keywords

breaking area
20
structure breaking
12
molecular dynamics
8
formation cu-pt
8
cu-pt nanocontacts
8
mechanically controlled
8
controlled break
8
break junction
8
structure
6
breaking
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!