A sample with a nominal composition 'NaVPO4F' is prepared by mechanochemically assisted solid-state synthesis using quenching. A detailed study of its crystal and local structure is conducted by means of XRD and FTIR and solid-state 31P NMR spectroscopies in comparison with Na3V2(PO4)2F3. It is shown that the as-prepared 'NaVPO4F' has a multiphase composition, including NaVPO4F as the main phase and Na3V2(PO4)2F3 and Na2.57V4P4O17F as the side products. The crystal structure of NaVPO4F is described in the monoclinic C2/c space group. It is characterized by negligible V3+/V4+ oxidation with the corresponding F-/O2- substitution and the presence of structural disordering. Using the Voronoi-Dirichlet partition (VDP) method, the Na+ and Li+ migration pathways in Tavorite-like NaVPO4F and closely related LiVPO4F (with the triclinic structure, P1[combining macron] S.G.) are analyzed. While the Na+ migration is suppressed in both cases, the Na+/Li+ ion exchange in NaVPO4F with the formation of monoclinic LiVPO4F could occur, but is difficult due to the sodium immobility rather than the instability of the lithium derivatives as was concluded from the DFT calculations.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cp02204gDOI Listing

Publication Analysis

Top Keywords

crystal structure
8
structure migration
4
migration paths
4
paths alkaline
4
alkaline ions
4
ions navpof
4
navpof sample
4
sample nominal
4
nominal composition
4
composition 'navpo4f'
4

Similar Publications

Time-resolved momentum microscopy is an emerging technique based on photoelectron spectroscopy for characterizing ultrafast electron dynamics and the out-of-equilibrium electronic structure of materials in the entire Brillouin zone with high efficiency. In this article, we introduce a setup for time-resolved momentum microscopy based on an energy-filtered momentum microscope coupled to a custom-made high-harmonic generation photon source driven by a multi-100 kHz commercial Yb-ultrafast laser that delivers fs pulses in the extreme ultraviolet range. The laser setup includes a nonlinear pulse compression stage employing spectral broadening in a Herriott-type bulk-based multi-pass cell.

View Article and Find Full Text PDF

Malachite green (MG) is used as a dye for materials such as wood, cotton, and nylon, and is used in aquaculture to prevent fungal and protozoan diseases. However, it is highly toxic, with carcinogenic, mutagenic, and teratogenic properties, resulting in bans worldwide. Despite this, MG is still frequently used in many countries due to its efficacy and economy.

View Article and Find Full Text PDF

Copper is ubiquitous as a structural material, and as a reagent in (bio)chemical transformations. A vast number of chemical reactions rely on the near-inevitable preference of copper for positive oxidation states to make useful compounds. Here we show this electronic paradigm can be subverted in a stable compound with a copper-magnesium bond, which conforms to the formal oxidation state of Cu(-I).

View Article and Find Full Text PDF

Z-DNA at the crossroads: untangling its role in genome dynamics.

Trends Biochem Sci

January 2025

Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiyacho, Sakyo-Ku, Kyoto 606-8501, Japan. Electronic address:

DNA can fold into noncanonical left-handed Z-DNA conformation beyond the right-handed B-DNA. While its crystal structure was discovered nearly four decades ago, it was predominantly considered a structural curiosity. Recent evidence suggests that Z-DNA formation occurs in nuclear and mitochondrial DNA (mtDNA), with significant biological implications.

View Article and Find Full Text PDF

Electromagnetism and thermostability of CrCsynthesised with high-temperature and high-pressure quenching method.

J Phys Condens Matter

January 2025

Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, People's Republic of China, Ningbo, Zhejiang, 315211, CHINA.

The interactions between the carbon skeleton and the metal atoms of a binary transition metal carbide (BTMC) are particular interest for industrial applications with openning physics and chemitry questions, especially in magnetoelectric (ME) functional materials and cemented carbides. Chromium and carbon BTMCs are a series of intermetallic compounds with typical chemical formulas and sharepolycrystalline powder c somehromium special characteristics.and carbon as precursors, In this paper,and synthesized s we usedingle-phase bluk Cr7C3 (orthorhombic, with space group: Pnma) with high density and good crystallinity by means of high-temperature and high-pressure quenching method (HTHPQM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!