Porous-activated carbon (PAC) materials have been playing a vital role in meeting the challenges of the ever-increasing demand for alternative clean and sustainable energy technologies. In the present scenario, a facile approach is suggested to produce hierarchical PAC at different activation temperatures in the range of 600 to 900 °C by using cow dung (CD) waste as a precursor, and HPO is adopted as the nonconventional activating agent to obtain large surface area values. The as-prepared cow dung-based PAC (CDPAC) is graphitic in nature with mixed micro- and mesoporous textures. High-resolution scanning electron microscopy depicts the morphology of CDPAC as nanoporous structures with a uniform arrangement. High-resolution transmission electron microscopy reveals spherical carbon dense nanoparticles with dense tiny spherical carbon particles. N adsorption-desorption isotherms show a very high specific surface area of 2457 m/g for the CDPAC 9 (CD 9) sample with a large pore volume of 1.965 cm/g. Electrochemical measurements of the CD 9 sample show a good specific capacitance ( ) of 347 F/g at a lower scan rate (5 mV/s) with improved cyclic stability, which is run up to 5000 cycles at a low current density (0.5 A/g). Hence, we choose an activated carbon prepared at 900 °C to fabricate the modified electrode material. In this regard, a flexible type symmetric supercapacitor device was fabricated, and the electrochemical test results show a supercapacitance value ( ) of 208 F/g.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7330913 | PMC |
http://dx.doi.org/10.1021/acsomega.0c00848 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!