Reactive oxygen species (ROS) are essential for the regulation of antitumor immune responses, where they could induce immunogenic cell death, promote antigen presentation, and activate immune cells. Here, we report the development of near-infrared (NIR)-driven immunostimulants, based on coupling upconversion nanoparticles with aggregation-induced emission luminogens (AIEgens), to integrate the immunological effects of ROS for enhanced adaptive antitumor immune responses. Intratumorally injected AIEgen-upconversion nanoparticles produce high-dose ROS under high-power NIR irradiation, which induces immunogenic cell death and antigen release. These nanoparticles can also capture the released antigens and deliver them to lymph nodes. Upon subsequent low-power NIR treatment of lymph nodes, low-dose ROS are generated to further trigger efficient T cell immune responses through activation of dendritic cells, preventing both local tumor recurrence and distant tumor growth. The utility of dual-mode pumping power on AIEgen-coupled upconversion nanoparticles offers a powerful and controllable platform to activate adaptive immune systems for tumor immunotherapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7319755PMC
http://dx.doi.org/10.1126/sciadv.abb2712DOI Listing

Publication Analysis

Top Keywords

upconversion nanoparticles
12
immune responses
12
aiegen-coupled upconversion
8
antitumor immune
8
immunogenic cell
8
cell death
8
lymph nodes
8
nanoparticles
5
ros
5
immune
5

Similar Publications

Background-free luminescent and chromatic assay for strong visual detection of creatinine.

Talanta

January 2025

Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China. Electronic address:

Creatinine is an essential biomarker for the clinical diagnosis and treatment of renal insufficiency. Although fluorescent methods are powerful tools for creatinine detection, almost all reported fluorescent probes rely on short-wavelength excitation and a single fluorescent signal, making them susceptible to environmental and operational conditions. In this study, a near-infrared excited, highly sensitive, and multi-output signal sensing system was established using upconversion nanoparticles and 3,5-dinitrobenzoic acid (DNBA) for synergistic luminescent and colorimetric assay for strong visual detection of creatinine.

View Article and Find Full Text PDF

Nitrogen heterocyclic carbenes (NHCs) are emerging as effective substitutes for conventional thiol ligands in surface functionalization of nanoparticles (NPs), offering exceptional stability to NPs under harsh conditions. However, the highly reactive feature of NHCs limits their use in introducing chemically active groups onto the NP surface. Herein, we develop a general yet robust strategy for the efficient surface functionalization of NPs with copolymer ligands bearing various functional groups.

View Article and Find Full Text PDF

Introduction: The successful diagnosis and treatment of early-stage breast cancer enhances the quality of life of patients. As a promising alternative to recently developed magnetic resonance imaging-guided radiotherapy, we proposed fluorescence molecular imaging-guided photodynamic therapy (FMI-guided PDT), which requires no expensive equipment. In the FMI simulations, ICG-C11 which has emission peaks at near-infrared wavelengths was used as the FMI agent.

View Article and Find Full Text PDF

The widespread use of thiamethoxam has led to pesticide residues that have sparked global concerns regarding ecological and human health risks. A pressing requirement exists for a detection method that is both swift and sensitive. Herein, we introduced an innovative fluorescence biosensor constructed from alendronic acid (ADA)-modified upconversion nanoparticles (UCNPs) linked with magnetic nanoparticles (MNPs) via aptamer recognition for the detection of thiamethoxam.

View Article and Find Full Text PDF

Internal Nanocavity Regulation of Embedded Rare Earth Up-Conversion Nanoparticles for HO Production Operable at Up to 780 nm.

Small

January 2025

XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.

Semiconductor photocatalysts embedded with rare earth upconversion nanoparticles (REUPs) are a promising strategy to improve their photoresponse range, but their photocatalytic performance within the near-infrared (NIR) region is far from satisfactory. Here, a method is reported to improve the photocatalytic activity by adjusting the nanocavity of upconversion nanoparticles inside a semiconductor. Two types of CdS embedded with NaYF:Yb,Er photocatalysts with core-shell structure (no cavity) (NYE/CdS) and yolk-shell structure (empty cavity) (NYE@CdS) are synthesized by different methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!