Early processing of visual information takes place in the human retina. Mimicking neurobiological structures and functionalities of the retina provides a promising pathway to achieving vision sensor with highly efficient image processing. Here, we demonstrate a prototype vision sensor that operates via the gate-tunable positive and negative photoresponses of the van der Waals (vdW) vertical heterostructures. The sensor emulates not only the neurobiological functionalities of bipolar cells and photoreceptors but also the unique connectivity between bipolar cells and photoreceptors. By tuning gate voltage for each pixel, we achieve reconfigurable vision sensor for simultaneous image sensing and processing. Furthermore, our prototype vision sensor itself can be trained to classify the input images by updating the gate voltages applied individually to each pixel in the sensor. Our work indicates that vdW vertical heterostructures offer a promising platform for the development of neural network vision sensor.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7314516 | PMC |
http://dx.doi.org/10.1126/sciadv.aba6173 | DOI Listing |
Anal Chim Acta
January 2025
Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China. Electronic address:
Metal-organic frameworks (MOFs) are porous, ordered arrays formed by coordination bonds between organic ligands and metal ions or clusters. The highly tunable properties of the MOF structure and performance make it possible to meet the needs of many applications. Conductive MOFs are essential in the domain of sensing due to their electrical conductivity, porosity, and catalytic properties, offering an effective platform for detection.
View Article and Find Full Text PDFNat Commun
January 2025
Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, China.
In-sensor computing has emerged as an ultrafast and low-power technique for next-generation machine vision. However, in situ training of in-sensor computing systems remains challenging due to the demands for both high-performance devices and efficient programming schemes. Here, we experimentally demonstrate the in situ training of an in-sensor artificial neural network (ANN) based on ferroelectric photosensors (FE-PSs).
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Optometry and Vision Science, Faculty of Science and Technology, University of Latvia, Jelgavas Street 1, LV-1004 Riga, Latvia.
Eccentric photorefractometry is widely used to measure eye refraction, accommodation, gaze position, and pupil size. While the individual calibration of refraction and accommodation data has been extensively studied, gaze measurements have received less attention. PowerRef 3 does not incorporate individual calibration for gaze measurements, resulting in a divergent offset between the measured and expected gaze positions.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Electromechanical Engineering, University of Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal.
This article presents the development of a resistive frost-detection sensor fabricated using Fused Filament Fabrication (FFF) with a conductive filament. This sensor was designed to enhance demand-defrost control in industrial refrigeration systems. Frost accumulation on evaporator surfaces blocks airflow and creates a thermal insulating barrier that reduces heat exchange efficiency, increasing energy consumption and operational costs.
View Article and Find Full Text PDFSensors (Basel)
December 2024
NUS-ISS, National University of Singapore, Singapore 119615, Singapore.
The attention mechanism is essential to (CNN) vision backbones used for sensing and imaging systems. Conventional attention modules are designed heuristically, relying heavily on empirical tuning. To tackle the challenge of designing attention mechanisms, this paper proposes a novel probabilistic attention mechanism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!