Cultivated grapevines () lack resistance to powdery mildew (PM) with few exceptions. Resistance to this pathogen within has been reported in earlier studies and identified as the locus in two Central Asian table grape accessions. Other PM-resistant cultivated varieties and accessions of the wild ancestor subsp. were soon identified raising questions regarding the origin of the resistance. In this study, F1 breeding populations were developed with a PM susceptible subsp. breeding line and a PM-resistant subsp. accession. Genotyping was carried out with five locus linked SSR markers. A PM resistance locus explaining up to 96% of the phenotypic variation was identified in the same genomic position, where the locus was previously reported. New SSR marker alleles linked with the resistance locus were identified. We report results of PM resistance in multiple accessions of subsp. collected as seed lots or cuttings from five countries in the Caucasus and Central Asia. A total of 20 females from 11 seed lots and 19 males from nine seed lots collected from Georgia, Armenia, and Azerbaijan were resistant to PM. Three male and one female plant collected as cuttings from Afghanistan and Iran were also resistant to PM. Allelic analysis of markers linked with the locus in conjunction with disease evaluation data found a high diversity of allelic haplotypes, which are only possible via recombination events occurring over a long time period. Sequence analysis of two alleles of the SSR marker that cosegregates with the resistance found SNPs that were present in the wild progenitor and in cultivated forms. Variable levels of PM resistance among the tested accessions were also observed. These lines of evidence suggest that the powdery mildew fungus may have been present in Asia for a longer time than currently thought, giving the wild progenitor subsp. time to coevolve with and develop resistance to this pathogen.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7326912PMC
http://dx.doi.org/10.1038/s41438-020-0335-zDOI Listing

Publication Analysis

Top Keywords

powdery mildew
12
seed lots
12
resistance
10
central asian
8
cultivated grapevines
8
central asia
8
resistance pathogen
8
resistance locus
8
ssr marker
8
wild progenitor
8

Similar Publications

Nanoization of Technical Pesticides: Facile and Smart Pesticide Nanocapsules Directly Encapsulated through "On Site" Metal-Polyphenol Coordination Assembly for Improved Efficacy and Biosafety.

J Agric Food Chem

January 2025

State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.

Facile pesticide nanocapsules were successfully prepared by directly encapsulating the antisolvent precipitation of pesticides through instantaneous "on site" coordination assembly of tannic acid and Fe, avoiding tedious preparation, time consumption, and large amounts of organic solvents. The pesticide nanocapsules showed excellent resistance to ultraviolet photolysis and rainwater washing owing to the nanocapsule walls. The smart pesticide nanocapsules exhibited the controlled release of pesticides under multidimensional stimuli, such as acidic/alkaline pH, glutathione, HO, phytic acid, laccase, tannase, and sunlight, which were related to the physiological and natural environments of crops, pests, and pathogens.

View Article and Find Full Text PDF

The protracted and immoderate utilization of chemical fertilizers has been detrimental to the composition of fungi in the soil and quality of crops. To ameliorate the adverse effects, a 6-year positioning experiment was undertaken to investigate the impact of substituting 0 % (CF), 25 % (M25), 50 % (M50), 75 % (M75), and 100 % (M100) of 225 kg ha chemical fertilizer nitrogen with manure nitrogen on both soil fungi and maize quality. This study showed that the expansion of Aspergillus heterocaryoticus, Xerochrysium dermatitidis, and Aspergillus penicillioides contributed to heightened levels of amylose and soluble sugars.

View Article and Find Full Text PDF

The Exocyst Subunits EqSec5 and EqSec6 Promote Powdery Mildew Fungus Growth and Pathogenicity.

J Fungi (Basel)

January 2025

Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Haikou 570228, China.

The exocyst complex in eukaryotic cells modulates secretory vesicle transportation to promote exocytosis. The exocyst is also required for the hyphal growth and pathogenic development of several filamentous phytopathogens. Obligate biotrophic powdery mildew fungi cause considerable damage to many cash crops; however, the exocyst's roles in this group of fungi is not well studied.

View Article and Find Full Text PDF

Rosa laevigata is an excellent rose germplasm, highly resistant to aphid, and immune to both rose black spot and powdery mildew disease. It is also a well-known edible plant with a long history of medicinal use in China, having the effects of improving kidney function, inhibiting arteriosclerosis, and reducing inflammation. In this study, we assembled a high-quality chromosome-scale genome for R.

View Article and Find Full Text PDF

The wheat NLR pair RXL/Pm5e confers resistance to powdery mildew.

Plant Biotechnol J

January 2025

Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.

Powdery mildew poses a significant threat to global wheat production and most cloned and deployed resistance genes for wheat breeding encode nucleotide-binding and leucine-rich repeat (NLR) immune receptors. Although two genetically linked NLRs function together as an NLR pair have been reported in other species, this phenomenon has been relatively less studied in wheat. Here, we demonstrate that two tightly linked NLR genes, RXL and Pm5e, arranged in a head-to-head orientation, function together as an NLR pair to mediate powdery mildew resistance in wheat.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!